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1. EXECUTIVE SUMMARY 

This deliverable presents the third and final cycle architecture of the SmartSantander facility, which is 

built incrementally on the basis of the second cycle architecture presented in deliverable [D1.2]. The 

process in justifying this architecture update is thoroughly presented in the document in the form of 

motivating use cases, derived requirements and further architectural specifications. 

As a starting point for the specification process served a set of recommendation from the expert 
reviewers, which highlighted further gaps of the second cycle architecture and new ideas of how to 
make the facility more useful for a broader set of community stakeholders. Further ideas where 
motivated from emerging interests among the consortium partners. Community needs as of the 
second open call for experiments where considered, however did not result in additional use case 
demands. 

Based on these recommendations and ideas, a set of use cases have been developed. The use 
cases cover novel interactions of experimenters with the testbed and provide a basis for the 
motivation of detailed functional and non-functional requirements. Overall the use cases span two 
different federation scenarios, extensions to allow for experimentation with more powerful IoT nodes 
such as mobile phones and gateway tier devices as well as DTN based experiment configuration and 
data collection. In addition security and privacy implications have been considered for end-users 
participating in an experiment, e.g. via Smartphones. 
 
Overall 46 new functional and non-functional requirements have been derived for different subsystem 
functionalities. The requirements were further analysed and compared with the features and 
capabilities of existing system functions of the second cycle architecture. In the case that a functional 
requirement could not be fulfilled with the existing specification, a further analysis was performed in 
order to accommodate the open requirement into the architecture. As the goal was not to 
unnecessary increase the complexity of the final architecture, it was first verified whether existing 
system functions could be modified or extended in order to accommodate a (set of) requirements. 
New system functions where only specified in cases this was found not to be possible. 

A major architectural evolution represents the introduction of a new subsystem for Federation support. 

It addresses the need for different SmartSantander testbed sites to be federated among each or 

internally by the introduction of the Federator. A second requirement addressed by the Federation 

support is the external Federation with other testbeds in the FIRE community. These include the Slice 

Federation Architecture (SFA) for managing discovery, access and reservation of experimentation 

resources and Orbit Management Framework (OMF) for experimentation control and OMF 

Measurement Library (OML) for experiment data retrieval.  

The third cycle architecture introduces also new system functions to existing subsystems for the 

support for experiments that rely on Smartphones as experimentation resource. This resulted in both 

updates to system functions on server and IoT device tier as well as introduction of new service 

functions. These functions now allow effective configuration of experiments for Smartphones that 

respect user preferences on resource use and privacy. Furthermore they allow efficient scheduling of 

experiments, provisioning of experimentation code and experimental data collection. 
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In order to support experimentation with scheduled or opportunistic contacts of mobile 

experimentation resources with the testbed infrastructure, delay tolerant network (DTN) capabilities 

have been added to the architecture. As a result provisioning of experimentation code or the 

collection of experimentation data does not have to rely any more on permanent connections to the 

testbed backbone infrastructure. This is achieved by an upgrade of several existing components of 

the architecture in all three tiers of the architecture. 

A further new feature that the architecture introduces is the support for the execution of 

experimentation on GW tier devices. For this the Virtual Testbed Device (VTD) support that has been 

initial introduced in the 2nd cycle architecture specification is utilised and further enhanced by the 

addition of the VTD scheduler on the configuration subsystem on the GW tier. The latter manages the 

priority of experimentation code to be run on GW tier devices and that they do not impact the 

performance of the primary system functions. 

The final set of upgrade to existing system functions addresses the challenges of increased end user 

privacy in experimentation. Both PSense Client and PSense Server components of the application 

subsystem are upgraded with security functions such as encryption. 

A final contribution presented in this document are initial design considerations and guidelines that 
serve as starting point for the detailed design and implementation of the newly specified architectural 
features. They serve as input for further technical work in WP2 and WP3.   
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2. INTRODUCTION  

The initial SmartSantander architecture [D1.1] has been conceived within the first year of the project 

and proved itself as a solid foundation for the experimental facility design and implementation. The 

project selected a three phase spiral approach for its design and realisation, in which an initial 

architecture from the first cycle is incrementally enhanced and modified to accommodate new 

features that satisfy emerging requirements of the community. This document provides the third and 

final update to the architecture specifications and builds upon the second phase specification [D1.2]. 

The third architecture realisation cycle takes mainly into consideration the recommendations made at 

the second year review by the project reviewers, requirements from the FIRE community of projects 

through the FIA architecture board. It also considers the requirements from the second call projects, 

which are in most cases already supported by the second cycle architecture release. 

More specifically the third architecture introduces the following new features: 

 Federation support for different SmartSantander testbed sites. This allows all users of 

individual testbed sites to access all other testbeds within SmartSantander and to run 

experiments that utilise resources across the different testbeds. 

 Federation support with other FIRE testbeds. New extensions have been developed to make 

the SmartSantander architecture compliant towards the SFA and OMF/OML. This will allow 

the SmartSantander testbed to become accessible by users of testbeds that are compliant to 

these specifications and testbed resources to be used in joined experimentation across the 

respective testbeds. 

 DTN based communication support for experiment configuration and data collection. The 

experimentation management plane of the testbed does not need to rely any more on 

continuous connectivity through dedicated infrastructure, but can instead take advantage of 

opportunistic contacts of experimentation resources with infrastructure devices. 

 Experimentation support for more powerful SmartSantander nodes such as gateway nodes. 

This is based on the virtual testbed device (VTD) concept already introduced in the second 

cycle architecture and adapted to provide resource containment features and life-cycle 

management. 

 Experimentation support for mobile phones. It allows smart phones not only to be used as 

mere sensor data collectors as in the case of participatory sensing application, but also to 

integrate these as full experimentation resources into the SmartSantander framework. 

Experimenters are now able to install experimentation code on the smart phones and to 

perform the collection of statistics during experiments. 

 Updated security, privacy and trust mechanisms that focus not only on protecting the testbed 

infrastructure but also end-users that are directly or indirectly involved in the experiment 

execution and data collection.   

 Support for all new experiments from the second open call.  
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The remaining document is structured as follows. Section 3 provides an overview of third cycle use 

cases and requirements which have been developed as part of the work on IR1.4. Section 4 provides 

an overview of the third cycle architecture and provides detailed specification of the corresponding 

features that have been introduced in this final iteration. Section 5 outlines design considerations for 

the realisation of the newly specified featured as starting points for the detailed design and 

implementation activities in WP2 and WP3. Concluding remarks are provided in section 6. 
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3. THIRD CYCLE USE CASES AND REQUIREMENTS 

With an increasing maturity of the SmartSantander experimentation facility, the third cycle architecture 

design was initially planned to focus the development of federation capabilities. However due to 

emerging demands, further additional use cases have been conceived aiming at supporting new 

experimenting and services provision possibilities. 

On one hand, the defined set of use cases pursues capabilities of extensibility of the underlying 

experimentation platform. This includes federation capabilities, the virtualization of nodes and the 

easiness of including new experiments as well as new testbed sites. On the other hand, enhancing 

the end-user experience is also important, taking into account the new smartphones, the security and 

privacy of end user data, and how he/she connects to the network. 

The new use cases comprise: 

1. Federation Use Cases, both intra SmartSantander and with other experimentation facilities. 

2. Delay Tolerant Network Use Cases: Efficient experimentation code and data collection 
downloading relaying on opportunistic network connection, using different wireless 
infrastructure possibilities depending on the environment. 

3. Virtualization on top of powerful SmartSantander nodes such the gateways. 

4. Execution of experiments on top of smart phones aiming at extending the capabilities so far 
exploited in the participatory sensing scenario. 

5. Trust Security and Privacy from the perspective of the end-users, focusing on the current end-
user worries about the data exchange and privacy. 

3.1. Federation Use Cases 

SmartSantander considers two different cases of federation: The first one is about allowing 

experiments which span across all testbed sites of the consortium of the SmartSantander project. 

This kind of federation allows users to utilize nodes of different testbed sites in a single experiment.  

The second one is to open the SmartSantander experiment platform to other coexisting 

experimentation platforms. In particular, the work being carried out in FED4FIRE project [FED4FIRE] 

is one of the most promising approaches for enabling the federation with other FIRE facilities. 

While the first type aims to provide a large and comparatively homogeneous WSN testbed, the 

second one will open SmartSantander to other experimental facilities which are not necessarily 

restricted to Internet of Things technologies. 

3.1.1. Intra Smart Santander Federation 

The SmartSantander facility is made of five main deployments sites, Guildford, Lübeck, Melbourne, 

Pancevo and Santander. Aiming at providing a uniform authentication and integrated resource 
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reservation framework the appropriate enablers and mechanisms have to be defined. In the picture 

bellow the interaction between the experimenter and the platform manager with the experimental 

facility is depicted. 

 

Figure 1:  Intra SmartSantander Federation 

In order to simplify the process of distributed (i.e. federated) experimentation the experimenter should 

not be concerned with the “internal” details of the federation (e.g. the API endpoints of the individual 

testbed sites). He is merely presented with the available set of node URNs and the corresponding 

meta data (in form of a WiseML document) and connect his client application to an endpoint provided 

by the federations “Federator” component, i.e. for a federated experiment a client must connect only 

to the federator and not to the individual testbeds. Below, a short description of the individual 

experimenter use cases is given: 

1. By reserving nodes from different sites an experimenter creates a distributed experiment 
spanning several SmartSantander sites. For this the experimenter retrieves the federated 
testbed meta data (i.e. the merged WiseML description of the federated sites), chooses a 
subset of nodes from a subset of testbeds and reserves these nodes by simply referring to the 
individual node URNs. 

2. Experimenters can manage (e.g. flash, reset) nodes of a distributed experiment independently 
of their physical location and testbed, again, by simply referring to the node URNs. 

3. Communication with the distributed experiment nodes happens in the same manner as with 
nodes of one testbed. Every message sent to the nodes (a.k.a. downstream message) can be 
sent as a unicast or multicast message and every response or output from individual nodes is 
forwarded to the experimenter. 
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In addition to the experimentation use cases just described, an additional set of use cases for 

managing user accounts is briefly described below: 

4. The creation of user accounts can be done by both experimenters and testbed admins. In 
order to conduct a distributed experiment a user account has to be created on each of the 
federated testbeds in use, i.e. there is no Single sign-on, common user or authorization 
database shared by the individual testbeds. However, a front end can be used that allows the 
creation of “the same” user account on multiple testbeds simultaneously, so that the user 
credentials are identical on each testbed and the process effort is reduced to a minimum. 

5. Updating user accounts (including password change) can also be done by both the 
experimenters and the testbed admins. While the experimenter can only update his own 
account on each testbed, the admins of the individual testbeds have the right to update any 
account in their domain. 

6. The deletion of user accounts can be done by both the experimenters and the testbed admins. 
While the experimenter can only delete his own account on each testbed, the admins of the 
individual testbeds have the right to delete any account in their domain. 

7. Finally, fine-grained authorization of users is managed by the individual testbed 
administrators, giving them full control over who is allowed to access which resources in their 
testbed site. To simplify the process of managing authorization the users can be assigned with 
roles. Each role has a set of certain access rights to a specific node set. Users that are 
assigned a role inherit these access rights. 

3.1.2. Exposing SmartSantander to External Experimentation 

Facilities 

Use Case: Experiment involving multiple FIRE testbeds 

An SME with large expertise in urban traffic management is trying to build a new driver guidance 

service based on real-time traffic information. Using the speed and location information gathered from 

the sensors installed on vehicles as well as the data reported by traffic monitoring sensors at the main 

entrances of the city and the noise level sensors deployed at Santander’s main avenues, they have 

created an algorithm that is able to create both real-time traffic maps and ten minutes ahead 

predictions of traffic status in the city. Combining this algorithm with route planners, this SME is 

planning to create an App for mobile devices that will guide drivers away from traffic jams. 

Besides the access to the raw data that SmartSantander testbed is able to provide, the bandwidth 

and computing requirements that this service implies is too high for SME financial capabilities. Thus, 

they are planning to use several FIRE research testbeds to make the testing of their initial 

developments. 

They are in contact with a FI networking testbed ready to serve high and dynamic interconnection 

demands based on OpenFlow so that they can test which are the best options for taking the 

information from the sensors to the Cloud infrastructure they are using for making the algorithms 

calculations and exposing the service. There is a huge amount of information to be used in the traffic 
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maps calculations and it is quite important to have it on a strict time manner. Moreover, they are 

planning to use a Cloud testbed for all storage, computing and service provisioning aspects. In this 

sense, depending on the amount of users and available information from the sensor infrastructure, 

computation capacity might be adjusted dynamically. The SME wants to develop mechanisms that 

allow them to estimate this necessities so that they can anticipate them and not incur in overspending 

(i.e. paying for capacities not used) or underestimation (i.e. failure in service provision due to not 

enough resources). 

Enabling common mechanisms that enable this SME to seamlessly access to the capabilities of these 

three heterogeneous testbeds is of paramount importance. In other case, an experimenter on similar 

circumstances would need to learn how to run experiments on each of the testbeds. Supporting the 

use of SmartSantander facility in conjunction with other FIRE testbeds by sharing a uniform 

experiment life-cycle management increases its usability since it allows to use it on experiments with 

a holistic Future Internet scope not restricted to IoT only. 

3.2. Experimentation Software Updates through Scheduled/Opportunistic 

Contacts 

Two connectivity-related factors are notable in the exploitation of the SmartSantander infrastructure: 

performance and costs. In particular, certain urban exploitation scenarios such as target-tracking, 

traffic monitoring may involve the transmission of large volumes of sensor data. Similarly, 

experimentation often requires experimenter code to be downloaded on the sensor nodes for node-

reprogramming. The fact that occasional software updates in the form of image-based reprogramming 

may be required for applications has to be considered as well. 

When nodes are static and accessible through high bandwidth and reliable Internet connection such 

as IEEE 802.11, the performance associated with the above mentioned tasks are within operational 

limits and data transfer costs are kept low. However, nodes such as mobile sensing nodes and nodes 

deployed in remote locations are characterised by low-bandwidth transmissions and/or intermittent 

connectivity. In these situations, the traditional solution is to resort to WAN connectivity solutions such 

as GPRS to ensure a long-lasting transmission link for updating software on the nodes. However, 

cellular internet connectivity is slow (the impending rollout of 4G notwithstanding) and incur high costs 

when data transfers are frequent and relatively large updates have to be uploaded. We therefore 

explore the possibility of using Delay/Disruption Tolerant network technology to circumvent the low 

data rates and potentially high running costs associated with cellular internet.  

DTNs overcome the problems associated with intermittent connectivity, long variable delay, 

asymmetric data rates and high error rates by using store-and-forward message switching. Messages 

(whole blocks of user data) or fragments of such messages are moved/forwarded from a storage 

place on one node (DTN routers) to a storage place on another node (another DTN router) along a 

path that eventually reaches the destination node. DTN routers must therefore hold messages in 

persistent storage as a communication link to the next hop may not be available for a relatively long 

time. When mobile sensor nodes, e.g. nodes mounted on top of vehicles move, in and out of range of 

static gateways, the intermittent connectivity causes network partitions which cause loss of data (TCP 



 

SMARTSANTANDER PROJECT 

D1.3  16 / 60 

SMARTSANTANDER

reacts to packet drops with slower retransmission timings or ends the session). DTNs are able to 

withstand network partitions caused by mobile nodes by forwarding messages to DTN routers along 

the path of the mobile node. They use store-and-forward techniques to ensure that intermittently 

connected nodes are able to receive expected messages through contacts with DTN routers. This 

contact can be opportunistic or scheduled (if the motion path of the node is known) and short-lived 

or long-lived. Duration of contact and contact-predictability are key factors that influence the 

choice of routing protocols to be used in the DTN.  

In the context of mobile sensing in SmartSantander, we identify one potential use of DTN protocols for 

facilitating the reprogramming of IoT nodes mounted on top of buses (for environmental monitoring 

and fleet management). Other interesting DTN use cases are theoretically possible such as using the 

mobile nodes as DTN routers (i.e. data ferries) to collect sensor readings from islands of isolated 

sensor nodes and transfer them to the USN data portal via opportunistic contacts with WiFi hotspots. 

However, only use cases can be realised within the remaining duration of the project are documented 

here.  

Use Case: DTN-Enabled Software Updates for Mobile Sensor Nodes 

As WAN connections via GPRS are slow and costly for downloading software images on mobile 

sensor nodes for experimentation purposes, we exploit the scheduled contact of buses with Wi-Fi 

hotspots at the bus depot to enable this feature. Thus, when a set of mobile sensor nodes are 

reserved for a particular experiment, the Experiment Scheduler sub-system computes a deployment 

plan to optimally upload the software image on the required nodes based on the following parameters: 

experiment start time, size of software image, scheduled contact of sensor node with Wi-Fi hotspot, 

duration of contact, data rate available during connection. The deployment plan specifies the set of 

DTN routers where contact is predicted to be made, the expected duration of the contact, the subset 

of mobile nodes that need to be reprogrammed and the set of software image fragments to upload.  

Once a deployment plan has been computed, it is scheduled for execution such that software image 

fragments are transferred via multicast protocols to the set of DTN routers before the predicted 

contacts. DTN routers at the Bus Depot form a multicast group for software image fragment 

dissemination. Retransmission delays due to data transfer packet errors must be factored in to ensure 

a timely delivery of software image fragments to the DTN routers at the Bus Depot. The expected time 

of contact can be estimated from the scheduled arrival of the buses at the Bus Depot.  

DTN routers also act as IoT gateway nodes and therefore run the functionality for IoT node detection 

and registration and for node OTAP. Once the DTN routers have received the software image 

fragments and a copy of the deployment plan, they subscribe to the event notifying the availability of 

the target mobile nodes. When bus-mounted nodes arrive at the depot, they are detected by the 

NodeManager component, which in turn notifies the DTN router of the node’s availability. The DTN 

router verifies that the duration of the node’s scheduled contact is long enough for the transfer of the 

software image (accurate data rates are obtained to particular nodes by frequent node-link probing). A 

successful check results in the DTN gateway to proceed with the software image fragments transfer. 

By sending Deployment Completion Status message, the DTN gateway informs  the Experiment 
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Scheduler with the result of the attempted deployment. A Deployment Plan may span over a number 

of scheduled contacts at the Bus Depot if the contact duration is not long-lived enough for the transfer 

of all the software image fragments.  

Bus arrival and departure times are only indicative and nodes can leave the Bus Depot during 

software fragment transfers. The Deployment Completion Status plan therefore states the progress 

status of the node reprogramming attempt. The Experiment Scheduler sub-system can decide to use 

WAN connections to the node or other short-lived opportunistic contacts with DTN routers along the 

bus route (e.g. at bus stops) to finish the node software update if it was interrupted unexpectedly and 

an experiment is due to start before the next scheduled contact.  

Alternatively, if an experiment has to start and cannot wait for the scheduled Wi-Fi contact (normally 

preferred) at the Bus Depot, DTN gateways that lie along the route of the buses may be used. The 

fact that buses have to conform to particular routes and schedules can be exploited. It is for instance 

known that buses will spend about 1-2 minutes at bus stops for picking passengers. Hence, if the 

Experiment Scheduler knows the set of scheduled short-lived contacts with Wi-Fi-enabled DTN 

routers (located near bus stops preferably) as well as the data rates of the links with the stopped 

mobile nodes, it can determine the set of software image fragments to send to a particular DTN 

router. The dissemination of software image fragments has to be epidemic to take into account the 

possibility of corrupted fragments or busses not stopping at particular bus stops (no passenger 

alighting/mounting). Thus, an experimentation node on top of a bus will collect software fragments in 

a redundant manner from DTN routers along the bus route. Once the whole image has been 

reconstituted, it sends back an acknowledgement to the Experiment Scheduler through an 

opportunistic contact with another DTN router. It may receive a directive to start the experiment from 

the Experiment Scheduler if all participating nodes have been similarly reprogrammed. 

The experiment software dissemination to the reserved nodes is best-effort since there is no 

guarantee that all selected nodes will be reprogrammed prior to the beginning of an experiment. Thus 

at the scheduled start of an experiment, only the nodes with full copies of the experiment code will 

participate in the experiment. 

 

3.3. Virtualization on top of powerful Smart Santander nodes 

The current SmartSantander architecture supports the experimentation life-cycle with resources of the 

IoT node tier and the creation of services and applications that exploit the IoT generated data through 

the USN subsystem.  

However more complex experiments may require the execution of code on gateway tier or server tier 

resources. While the these tiers are defined in the SmartSantander architecture and physically utilised 

for the current testbed realisation, resources of these tiers are currently not directly accessible and 

managed through the SmartSantander/WISEBED testbed run-time environment. In other words, 

users cannot easily discover such resources in the testbed, allocate these for experiments, deploy 

code on them or collect experimental results/statistics through a well- defined API. This section 
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provides initial consideration for the utilisation of gateway tier resources as part of the 

SmartSantander experiments.  

Properties and constraints of GW tier resources 

In the following we briefly describe some of the main characteristics and constraints for gateway tier 

resources, which are important to understand when designing a solution for their integration in the 

experimentation life-cycle: 

 Gateway tier resources provide backbone connectivity services for nodes of the IoT node tier 

 Gateway tier resources are typically more powerful than IoT node tier resources, however less 
powerful than server tier resources. Typical gateway tier resources used in the testbeds are 
small laptops (Luebeck), embedded ARM5 based servers such as Plugcomputers (Guildford) 
or low end x86 board (Meshlium). 

 Like IoT resources, GW tier resources are heterogeneous and may support different operating 
systems, allow the execution of programs/scripts of different languages and provide different 
wireless/wired communication interfaces 

 GW tier resources run all software necessary for the management of IoT nodes that are 
attached to them, e.g. testbed run time end point. 

 

Potential use cases of gateway tier resources in experiments 

There may be various reasons why an experimenter would like to utilise gateway tier resources for 

experiments. On one side, an experimenter may be interested in studying the performance of 

solutions that directly target the IoT gateway tier. This could be a new M2M gateway protocol or an 

edge router solution for 6LoWPAN. On the other side a user may also want to use GW tier resources 

to support more realistic experimentation among IoT nodes. Some examples of the latter a provided 

as follows: 

 Enable interactions between server tier application components and IoT node components 
under realistic conditions 

 Enable interaction among multiple, potentially heterogeneous IoT node technologies 

 Utilise resources on gateway tier devices to extend the computational or communication 
capabilities of IoT nodes 

 Utilise resources on gateway tier devices to emulate IoT node capabilities 
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Making gateway resources available for experimentation 

There are different possible ways how gateway resources can be made available for experimentation 

in the SmartSantander testbed. The resulting options may be subject to different constraints and 

come at different implementation complexity, pose different risks to testbed or provide certain 

constraints to the experiments. In the following we only provide a potential list of options and leave 

their analysis to later discussions. 

Options for gateway resource interactions: 

 Simple remote login, data transfer (e.g. using SSH, sftp) 

 Through a well-defined testbed API, providing similar abstractions as the for IoT nodes 

Options for code execution on gateway resources: 

 Allowing the creation of process(es) on top of the host OS, exploiting only the OS native user 
management and access control functions. This is relatively simple to realise and exploits the 
OS’s capability to schedule processes for execution. However, it presents a system’s 
vulnerability in that a misbehaving experiment code can monopolise the CPU and may cause 
the remaining OS processes to be unresponsive. 

 Providing sand-boxed execution of experimentation code through lightweight container tools 
such as Linux Containers (LXC) [LXC]. Containers effectively partition the resources managed 
by a single operating system into isolated groups to better balance the conflicting demands on 
resource usage between the isolated groups. In contrast to virtualization, neither instruction-
level emulation nor just-in-time compilation is required. Containers can run instructions native 
to the core CPU without any special interpretation mechanisms. None of the complexities of 
para-virtualization or system call thunking1 are required either. By providing a way to create 
and enter containers, an operating system gives applications the illusion of running on a 
separate machine while at the same time sharing many of the underlying resources. 

 Middleware-level application segregation and scheduling. This involves the use of a 
middleware-level application segregation system to specify quantitative constraints on the 
share allocated to applications for each node resource and to enforce these constraints 
through appropriate scheduling policies. The middleware framework encompasses a set of 
resource scheduling mechanisms and policies aimed at maximising application performance 
without violating resource limitations. Applications are scheduled for execution using real-time 
fixed-priority round-robin scheduling i.e. they get time slices of constant duration. Low-priority 
tasks are pre-empted by high-priority processes. Experiments will always run at a priority 
lower than the middleware’s administrative process, thus barring the opportunity for 
misbehaving experiment applications to monopolise the CPU. An example implementation of 

                                                           

 

1
 System call thunking refers to the interception and transformation of system calls to run alternative routines. For 

example, translating a system call from 32-bit code to 16-bit code in a virtual machine. 
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this type of middleware-level application segregation and scheduling framework is described in 
more details in [Anglano]. 

 Hardware virtualisation, allowing the creation of one or more VM on top of the gateway node. 

3.4. Virtualization on top of Smartphones 

As mentioned before, the current SmartSantander architecture supports the experimentation life-cycle 

with resources of the IoT node tier and the creation of services and applications that exploit the IoT 

generated data through the IDAS. In the context of WP4, experimentation on smartphones is 

performed, with the realisation of the “Pace of the City” and “Augmented Reality” applications. In 

these complex experiments, experimentation source code is required at both aforementioned two 

levels: native iOS and ANDROID applications are deployed on smartphones and custom web 

services are deployed at server level, for exploiting the gathered data from mobile phone applications 

through IDAS and for interacting with these applications for  data exchange. In the current approach 

smartphones and experiment lifecycle are not directly managed by the SmartSantander platform as 

the experimentation code is deployed and executed on smartphones through the corresponding 

market stores of the iPhone/Android platforms.  

In order to allow more generic experimentation with Smartphone resources, it is desired that the 

platform would support a comparable experimentation life-cycle management as with IoT resources. 

However there are several differences as to the ownership of the underlying experimentation 

platforms, connectivity, configuration capabilities and constraints. In the following several use cases 

are discussed from different stake holder viewpoints in order to motivate requirements for this 

envisioned feature.  

View Point of Smartphone Owner 

The following use case describes the participation of a SmartPhone as an experimentation resource 

in the SmartSantander facility from the view point of the smartphone owner. The scenario covers the 

following aspects:  

 Bootstrapping – how a smartphone can become an experimentation resource 

 Personalisation – Setting of resource restrictions for potential experiments and other 
experimentation preferences 

 Opportunistic experimentation – An experiment executes in the background on the device 
without direct user involvement 

 Interactive experimentation – An experiment executes on the device which requires at times 
direct user involvement as part of the experiment 

 User incentivisation – a possible idea how users can be incentivised to participate more 
frequently in experiments 

 Withdrawal from an on-going experiment  
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Use case scenario 

Pedro is interested in making his Android smartphone available as an experimentation resource to the 

SmartSantander facility, in order to contribute to the development of innovative services for the benefit 

of his community. He visits the SmartSantander website and clicks on a link that redirects him to 

google play appstore, in which he can find the SmartSantander ShareMyPhone application. 

After installation of the ShareMyPhone application, Pedro launches it for the first time. A privacy 

configuration assistant appears that guides him through several configuration options. This includes 

settings about what sensors, storage resources and communication devices he wishes to share for 

experiments, periods of time during which he may not like to provide to his device for experiments and 

whether he wants to be explicit informed about an experimentation request and provide consent to it. 

More advanced configuration options allow him to change default thresholds for experiment execution 

based on actual smartphone resource availability such as remaining power, CPU load or memory 

utilisation as well as data transmission restriction on different network interfaces. Pedro opts for 

making all sensors available apart from the microphone and GPS. As he has an unlimited 3G data 

plan with his operator, he consents to the occasional use of mobile network data traffic should he not 

be in Wifi coverage. Pedro also requests an implicit notification for an experiment.  After Pedro 

finalises the setup wizard the application thanks him for participation and informs that he can modify 

his preferences at any time. The application synchronises the settings briefly with a network server in 

the SmartSantander testbed. 

Several days later Pedro receives a notification for a first experiment, which comes with a brief 

description of the nature and what on smart phone resources are required and the duration and 

frequency of data collection and estimated data traffic requirements. Pedro accepts the experiment 

which is downloaded and then executed on his devices on a prescheduled time. The experiment 

captures the trajectories of the users when bicycling. The experimentation code also detects puddles, 

obstacles etc. by evaluating different frequency/granularity levels of GPS recording, various machine 

learning algorithms or signal processing methods for detecting puddles, obstacles etc. The 

experiment successfully completes after 1 week and he is provided with 1000 Santander points. His 

ranking is updated in a wall of fame on the city website, which lists top 100 contributors. 

At a later stage the experiment is repeated with a semi-supervised machine learning algorithm that 

requires occasional manual labeling of the data set by the user. Pedro consents to it although the 

experiment is expected to last for a two week period. After each detected bike journey, Pedro is asked 

to provide additional information that is used for labeling the data captured by the experimentation 

code. 

One week into the experiment, Pedro decides to withdraw from the experiment as he is expected to 

travel for a business trip on short notice. He opens the application, selects the current experiment and 

revokes his consent for participation. ShareMyPhone application synchronizes the remaining data 

with the experimentation data base of the network server and uninstalls the experiment from his 

phone. 
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View Point of Experimenter 

The following use case describes the participation of a SmartPhone as an experimentation resource 

in the SmartSantander facility from the view point of the experimenter. The scenario covers the 

following aspects:  

 Interaction with the SmartSantander facility for resource selection  

 Interaction with the SmartSantander facility for experiment submission  

o source code of experiment 

o various parameters of the experiment 

 Experiment agreement describing the data recorded by the experiment and how they are 
going to be used 

Use case scenario 

A research team would like to perform a complex experiment studying mobilization of bicycles in 

urban environments using users with smartphones. The experiment they propose is twofold:  

 They would like to experiment on methods for bicycling context and event sensing like 
detecting puddles, obstacles, avg. speed when moving around the city. Furthermore, along 
with this they would like to experiment on implementing the aforementioned event sensing with 
minimum resource consumption (CPU time, memory, energy) so they would like to evaluate a 
number of different frequency/granularity levels of GPS recording, various machine learning 
algorithms or signal processing methods for detecting puddles, obstacles etc from smartphone 
sensor signals. 

 Furthermore, at service level they would like to test several algorithms for trajectory 
recommendation for proposing to users alternative paths (most frequent, safer, and fastest). In 
order to do that the plan is to evaluate several data mining algorithms for trajectory 
recommendation, optimization algorithms, multivariate analysis methods etc. 

In order to perform their experiment, experimenters should register to the SmartSantander platform. 

They should describe their experiment in depth, the various data recorded from smartphones and how 

they are going to maintain the anonymity and privacy of the end-users. They select a period of time 

for their experiment. They write their experimentation code either in native Android source code or in 

a proper scripting language, and along with the proper accompanying data files they upload their 

experiment in the SmartSantander platform. The experiment they propose is divided in two phases, 

by the end of the first phase they update the source code and data files of their experiment and re-

upload it in the SmartSantander platform: 

 In the first phase of the experiment, they implement a smartphone application which records 
the GPS traces of the users, the accelerometer signals, battery level etc. and then by various 
methods they generate events (obstacle, paddle etc) that are shown to the user. The user 
then confirms the validity of each event. 
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 At the end of the first phase of the experiments, experimenters gather from the 
SmartSantander platform all the recorded data. They process the recorded data and the 
feedback of users and later on fine tune their smartphone application in order to produce more 
accurate events. Furthermore, they process all recorder bicycle trajectories and build a 
trajectory recommendation model for suggesting an “optimal” bicycle route.  

 In the second phase of the experimenters they upload the new optimized version of their 
application that beside the more accurate event detection the show to the end-users 
recommendations of bicycle routes according to several criteria (safest, fastest etc.). End-
users rank the provided recommendations. 

 At the end of the second face experimenters gather once more all recorded datasets and user-
feedback, in order to evaluate once more the event detection methods and the trajectory 
recommendation models.  

View Point of SmartSantander Manager 

The following use case describes the participation of a Smartphone as an experimentation resource in 

the SmartSantander facility from the view point of the SmartSantander Manager (facility). The 

scenario covers the following aspects:  

 Bootstrapping – how a smartphone can become an experimentation resource 

 Reservation of smartphone devices for an experiment 

 Deployment of smartphone experiment to the devices 

 Maintenance of the anonymity and privacy of the smartphone owners  

 Alternative ways of communication of smartphone experiments with the SmartSantander 
platform. 

Use case scenario 

SmartSantander experiment manager receives a new smartphone experiment. He inspects the 

description of the experiment, the source code and accompanying data files. He validates and 

confirms that the experiment will maintain the anonymity and privacy of the end users. Moreover, he 

sets various parameters regarding the experiment like the minimum/maximum number of smartphone 

devices that can participate to the experiment. Furthermore, he configures the experimentation 

parameters for the collection of datasets from the smartphones. After this setup phase, he activates 

the experiment either by enabling the experiment scripts to be downloadable by the smartphones or 

by uploading the experimentation code to an online store to make it available for download by 

interested end users. By the end of the period of the experiment he disables the experiment by 

removing the experimentation source code/app and by stopping the data gathering interface.  

This aforementioned use cases envision a closer incorporation of smartphones in the 

SmartSantander platform and an experiment execution management in similar way as the rest IoT 

deployed nodes. The SmartSantander platform will register a number of smartphones, running a 

proper mobile phone application capable to interact with the main platform. Experimenters will upload 
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the mobile phone experimentation code (source or binary) to the SmartSantander platform and will 

reserve a fraction of SmartSantander smartphone nodes for a specific time interval. The platform will 

inspect the experimentation code (for privacy issues) and then at the selected time interval will deploy 

the code on the smartphones through the proper mobile phone application. This application will 

execute the experimentation code on the mobile phone for the required time interval and record all 

experimentation data that later on are pushed back on the SmartSantander platform. Finally, 

experimenter will retrieve the gathered experimentation data. There are several alternative ways to 

deploy experiments on smartphones and several ways to forward experimentation data on the 

SmartSantander platform (synchronous or asynchronous).  

3.5. Trust Security and Privacy from the perspective of the end-users 

User privacy preservation is a well-known concern in the Internet world. As the Internet is playing an 

ever growing role by enabling more and more services, it also introduces more and more risks in 

terms of user privacy preservation. The emergence of the Internet of Things (IoT) in this landscape is 

both encouraging on the one hand new kinds of services and on the other hand introducing new kinds 

of threats. 

Privacy concerns in IoT context depend on the kind of sensor data that are collected and exploited. 

See [privacy] for a survey about this subject. 

If sensor measurements characterize environmental data that are not related to individuals (such as 

e.g. the temperature at a given geographic location) then privacy preservation concerns are low. Of 

course operators may claim ownership about collected data, in order to protect their investments for 

IoT infrastructures. Then a proper security architecture such as the one defined for SmartSantander 

can efficiently protect infrastructure operators against eavesdropping risks. Authorization means are 

also available in order to let IoT infrastructure operators grant access only to intended recipients, such 

as experimenters, end users, or third parties service providers. 

Such statements apply to a civilian context where the motivation for privacy is mainly economical (still 

assuming that sensor data doesn’t relate to individuals). If we assume a military context instead, 

strategic reasons may be substituted to economical reasons. 

Now if we consider sensor data that relates indeed to an individual, then the ownership concept is 

somehow shifted from the IoT infrasturcture operator to the concerned individual. This statement 

becomes quite clear if we consider e.g. medical application where sensor data may carry health 

diagnostics. However this principle is not limited to medical applications. The  location of individuals 

for example is also typically considered as sensitive information which belongs to the private sphere. 

Various strategies may be proposed to address privacy preservation issues. Of course, several of the 

strategies below may be combined. 

One possible strategy consists in considering that private data is owned by the concerned individual, 

and giving to this individual a complete control about who he/she will share his/her private data with. 

This strategy somehow implies end to end security between the individual owning data, and 
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individuals that they decide to share their private data with. This strategy is well suited for medical 

applications. 

An alternative end to end security may also consist in having a trusted central entity that mediates 

communications between sensor data producers and sensor data consumers. Such an architecture 

choice may be induced if e.g. legal interception aspects are considered. 

As a third strategy, anonymity treatment may be applied at the source of potentially private sensor 

data. For example if the identity information is discarded from the sensor source, then the remaining 

measurement data can be considered anonymous, and it may be used to feed databases for 

statistical purposes. One may claim that this kind of anonymous data is equivalent to non-individual-

related sensor data. 

In the context of SmartSantander, privacy preservation concerns should be considered in view of 

which use cases are addressed. Health applications have not been addressed so far, so that end to 

end security has not been introduced in the architecture. However an authentication and authorization 

infrastructure has been defined and implemented in order to let testbed administrators have a 

complete control about which user is accessing which sensor data. In case of testbed federation, 

each testbed administrator has still a complete control about who should get access to sensor data 

that is generated inside in his/her testbed domain. 

Cryptographic techniques are in place in order to provide a good trust level against eavesdropping. 

Therefore the SmartSantander security architecture provides fair guarantees against dissemination of 

private information.  

 

However, a focus can be set on two specific SmartSantander applications that may be considered as 

sensitive in terms of user privacy preservation. In this respect, Participatory Sensing and Augmented 

Reality deserve special attention. 

 

Participatory Sensing: 

The Participatory Sensing application should be considered carefully with respect to user privacy, 

because user’s personal SmartPhones are exploited in order to complement classical sensors in 

terms of environmental measurement production. Such measurements are geo -localized and time-

stamped, therefore concerns may rise about the risk of user privacy exposure. 

However, this application benefits from anonymity treatment, as exposed earlier. Smartphone sensing 

information is attached only to a specific device, not to its owner whose identity is absent from sensor 

reports. 

Furthermore, the sensing reports are encrypted in such a way that external observers that may spy 

message exchanges over the air or over the Internet cannot restore any meaningful information. Only 

the concerned testbed operators can restore the original reports (that doesn’t expose any user identity 

anyway) and make them available to feed the Participatory Sensing application with properly 

anonymized data.  
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Augmented Reality: 

The augmented Reality application is another example where specific concerns may be fed with 

respect to user privacy protection. 

One of its objectives is to provide third party developers with feedback about tourist behaviours 

around points of interest. Therefore this application supposes recording of tourist behaviour. 

Once again, the key factor for protecting user privacy in this case is to treat user data in a statistical 

and anonymous way. Visitor identity should not be part of collected data, though some tourist 

information such as visitor nationalities can be collected for statistical purposes. 

Of course, it should not be possible to spy message exchanges over the air or over the Internet, 

which can be obtained through the use of state of the art encryption. Furthermore, only statistical and 

anonymised data should be made available to the subscribed application consumers.  

In summary, both exposed use cases (Participatory Sensing and Augmented Reality) present risks in 

terms of user privacy preservation. In both cases, it is possible to mitigate such risks by combining 

counter acting techniques, as detailed below. 

 User anonymisation is achieved by ensuring that any reports or messages originated from 
smartphones don’t contain any field related to a user’s identity.  

 Message encryption ensures that only testbed administrators may exploit reports or messages 
originated from smartphone. 

 User anonymization is further achieved by providing only statistical data and anonymised data 
in terms of application databases. 

 

3.6. Initial Requirements 

From the above use cases, the following set of requirements have been identified: 

Module ID Title Text 

AAA 

FR180 

Certification 

Authority 

SFA authentication is based on X.509 certificates, 

so a root certificate must exist to authenticate user 

certificates 

FR181 

User DB 

synchronization 

User authentication in SFA is managed in the SFA 

Registry, so SmartSantander user database should 

be synchronized with the SFA one 

FR182 User authorization 

Different Access policies could be defined for users 

accessing testbed through SFA or through  

SmartSantander traditional interfaces 

FR183 

User data base for 

authorization 

Each testbed site which intends to restrict access 

to certain functionality and devices of their testbed 

have to set up a user data base 
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FR184 User Management 

To ease the management of users for 

experimenters and the users themselves, a GUI 

client should allow for creating and updating 

accounts for multiple testbed sites simultaneously  

Reservation 

FR185 

SFA slice 

management 

In SFA, resources are organized in slices, so a 

component must be defined to translate slice 

management operations into SmartSantander 

reservations (for native experimentation on top of 

infrastructure) and subscriptions (for service 

experimentation).  

FR186 

Federated 

Resource 

Reservation 

Experimenters have to add resources from different 

sites of the federated SmartSantander testbed to a 

single reservation to create a federated experiment.  

Resource 

Management 

FR187 

SFA testbed 

exposure 

In order to expose SmartSantander as a SFA 

compliant testbed, a component understanding 

SFA protocol must be created. SFAWrap can be an 

option as a first approach and, in this case, a 

SmartSantander SFAWrap driver has to be 

developed. 

FR188 

RSpec Resource 

Description 

A RSpec version covering SmartSantander specific 

resource information has to be defined. 

FR189 

SFA Resource 

discovery 

SFA understands RSpecs resource description, so 

a component to translate Resource Directory (RD) 

responses into RSpec formatted data must be 

created. 

FR190 

Unified Meta Data 

Access 

In Order to easily access meta data from federated 

but otherwise independent testbeds, the access of 

a testbed’s meta data should be unified  

Experiment 

Configuration 

FR191 

OMF Aggregate 

Manager 

SmartSantander architecture needs to expose an 

OMFv6 Aggregate Manager in order to make itself 

OMF compliant 
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FR192 

OMF Resource 

Controller 

Each of the SmartSantander resources must be 

controlled through and OMF Resource Controller 

(RC), which will be able to interact with an OMF 

Experiment Controller. There is a need to 

implement at least two different kinds of RCs: one 

for native experimentation on top of nodes, which 

will interact with Testbed Runtime; and another one 

for service experimentation, which will interact with 

SmartSantander DCA Platform either directly or 

through a gateway to handle AAA in a simplified 

way. 

FR193 

FRCP XMPP 

Server 

For the usage of Federation Resourcer Control 

Protocol (FRCP) in OMF the testbed owner should 

provide an  

XMPP server. This XMPP server should be 

accessible from a private network, in order to 

connect  

with the testbed resources and resource 

controllers, but also it has to be connected to a 

public  

network, to allow the experiment controller to talk to 

the resources through it. 

FR194 

OML Experiment 

Monitoring 

The results coming from experiments have to be 

sent to OMF Experiment Controllers by using OML 

protocol, so at least one OML Measurement Point 

will have to be deployed for each experiment 

running on top of SmartSantander 

FR196 

Federated 

Experiment 

Control 

When the researcher uses the SmartSantander 

experimental facility to perform an experiment on 

devices which span over multiple testbed sites, the 

system must provide a mechanism to control (e.g. 

start, stop) these experiments. 
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Infrastructure 

Monitoring 

FR197 

OML based 

Monitoring 

OML provides an simplified way of sending 

monitoring information to upper layers. An OML 

monitoring server could be used to store a testbed 

monitoring information. Most of the monitoring in 

SmartSantander is based in the information in 

service frames and its behaviour, so an OML 

Measurement Point could be defined to analyze 

them.  

Experimentation 

Software Updates 

through Scheduled 

/Opportunistic 

Contacts using 

DTN protocols 

FR198 

DTN Deployment 

Plan 

Based on the parameters such as experiment start 

time, size of software image, scheduled contact of 

sensor node with DTN routers, duration of contact, 

data rate available during connection, the 

Experiment Scheduler subsystem shall compute a 

deployment plan.  The deployment plan specifies 

the set of DTN routers where contact is predicted to 

be made, the expected duration of the contact, the 

subset of mobile nodes that need to be 

reprogrammed and the set of software image 

fragments to upload on each DTN router.  

FR199 

DTN Deployment 

Plan Scheduling 

The deployment plan shall be scheduled for 

execution on the Portal Server with the Experiment 

Scheduler. The scheduled time of execution takes 

into account the experiment start time and software 

fragment transfer times and retransmission delays. 

FR200 

DTN Multicast 

Tree Dynamic 

Construction 

The set of DTN routers in the deployment plan are 

requested by the Experiment Scheduler to join a 

multicast group for the software image fragment 

dissemination.  The number of multicast trees 

constructed will depend on the number of different 

fragment-sets that need to be transmitted and the 

number of intended recipient DTN routers. 

FR201 

Permanent 

Multicast Trees 

For DTN routers where scheduled IoT-node-

contact is expected to be regular and long-lasting 

(enough for whole image transfer, e.g. Bus Depot), 

a permanent multicast tree shall be constructed. 

FR202

a 

DTN Deployment 

Plan Distribution 

The DTN deployment plan shall be distributed with 

the targeted set of DTN routers.  
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FR202

b 

Deployment Plan 

Execution at 

Portal Server 

At the scheduled time, the DTN deployment plan 

shall be executed by the Experiment Scheduler to 

initiate the transfer of sets of software image 

fragments to their respective group of DTN routers. 

The Experiment Scheduler shall use the existing 

iWSN interface to upload the software fragments 

on the IoT nodes.  

FR203 Authentication 

Image fragment transfers between the Portal 

Server and Gateway Devices must be reliable and 

authenticated via an authentication key  

FR204 

Persistent Storage 

at DTN router  

When a software image fragment is received by 

each DTN router, it  shall be checked for 

transmission errors and for conformance to DTN 

Deployment Plan. If corrupted fragments are 

detected, the Experiment Scheduler will be 

requested to retransmit them. If it is a member of 

the set of expected fragments for the host DTN 

router, it is saved to persistent storage. Else, it is 

discarded.  

FR205 

Fault tolerance 

and dependability 

Fragment sets shall be distributed to redundant 

DTN routers for fault tolerance. But only one DTN 

router shall proceed with fragment transfer to the 

mobile IoT node. 

FR206

a 

Detection of online 

mobile IoT nodes 

Each DTN router shall subscribe for node-arrival 

event notifications from the NodeManager 

component on the Gateway for when the mobile 

nodes are in close proximity. The event notification 

shall specify the type of network connection (e.g. 

802.11b/g or 802.15.4). 

FR206

b 

Detection of online 

mobile IoT nodes 

When mobile nodes become available via two or 

more network connections, the higher-bandwidth 

network connection is selected by the DTN router 

for image fragment transfers 

FR207 

Fragment MOTAP 

Upload 

When a DTN router is notified of the proximity of an 

IoT node/a set of IoT nodes, it should verify that the 

duration of the node’s scheduled contact is long 

enough for the transfer of the software image 

fragment(s). It shall then unicast/multicast the 

image fragment(s) to it/them using the MOTAP 

functionality on the Gateway. 
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FR208 

Software Image 

reconstitution 

Each target IoT node shall acknowledge the receipt 

of software image fragments and commit them in 

persistent storage. If all the image fragments have 

been received, the IoT node confirms the reception 

of the whole program and waits for the command to 

load the binary image in the flash memory. 

FR 209 

Deployment 

Execution Report 

After the transfer of image fragments has been 

completed, the DTN router shall send a 

Deployment Execution Report to the Experiment 

Scheduler, which describes the outcome of the 

image fragment uploads.  

FR210 

Remediation 

Action 

If the software image fragment transfer failed for an 

IoT node, the Experiment Scheduler may select 

another IoT node with similar characteristics and 

instruct the DTN router to  initiate the software 

image fragment upload.  

Experimentation 

support on 

gateway tier 

devices FR211 VTD support 

The testbed should allow the deployment of 

experimentation code on GW devices in the form of 

virtual testbed devices. VTD provide the same 

interface towards the testbed as physical device 

drivers. 

FR212 

VTD lifecycle 

management 

The testbed should allow the creation and deletion 

of previously deployed virtual testbed device on 

GW devices. 

FR213 

VTD resource 

constraint 

specification 

The VTD Scheduler component on the GW device 

shall provide an interface for GW owners to specify 

quantitative resource constraints on the share 

allocated for each VTD for each node resource.   

FR214 

VTD Priority 

Classes 

Resource allocation for VTDs shall be performed 

based on priority classes. Higher priority VTDs 

shall receive larger resource shares than low-

priority VTDs.  

FR215 VTD Scheduling 

The VTD CPU Scheduler shall use scheduling 

mechanisms and policies to schedule the VTD for 

execution on the CPU as per their resource 

allocation. 

FR216 VTD Preemption 

Low priority VTDs shall be preempted from 

resource utilisation by high priority VTDs or 

processes. 
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FR217 VTD Processes 

The VTD Scheduler shall support the execution of 

experimentation code written in different 

languages. 

IoT 

Nodes/Smartphon

es 

FR218 

Access 

Configuration to 

Smartphone 

resources    

The smartphone end-user should configure various 

access rights for his smartphone resources: 

sensors (Gps, accelerometer, microphone etc), 

network interfaces (wifi, Bluetooth, 3g), smartphone 

configuration settings (language, country etc.) 

FR219 

Experiment 

Execution 

Parameters     

The smartphone end-user should configure various 

execution parameters of utilization of his 

smartphone by an experiment like maximum 

memory used, maximum battery used. 

Furthermore, should be possible for smartphone 

end-user to turn on/off experiment execution.    

FR220 

Recorded 

Experimentation 

Datasets Upload 

Experimentation smartphone applications should 

upload the recorded datasets to the 

SmartSantander server.  

Experiment 

Configuration and 

Execution 

FR221 

Configuration of 

future experiment  

A testbed user should be able to configure an 

experiment for a resource reservation time that lies 

in the future and that may not be explicitly known to 

the experimenter in advance. 

FR222 

Selection of 

execution time 

In cases where the start time of an experiment is 

not crucial, the testbed may decide an optimal 

exectution time for an experiment that best 

matches the reource requirements expressed in the 

testbed configuration and other local policies 

FR223 

Automatic 

execution of 

experiments 

The testbed must be able to execute experiments 

on behalf of based on a configured or determined 

execution time, if a valid experiment configuration 

exists, without the need of a user or client side tool 

to be involved in the process. 

IoT 

Nodes/Smartphon

es 

NFR18

0 

Privacy of 

Smartphone end-

users    

Experiment execution should maintain the 

privacy/anonymity of smartphone end-users. 
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NFR18

1 

Integrity of 

SmartPhone 

Experiment execution should maintain the proper 

operation of smartphone: no battery drain, no 

memory drain, no erase of user files  

NFR18

2 

Recorded 

Experimentation 

Datasets 

Experimentation smartphone applications should 

record smartphone resources (gps, batter etc.) and 

end-user feedback.  

Table 1 List of functional and non-functional requirements 
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4. THIRD CYCLE SMARTSANTANDER ARCHITECTURE SPECIFICATION 

This section provides an overview of the third cycle specification of the SmartSantander architecture. 

The third cycle architecture represents an evolution of the second cycle architecture specification 

presented in [D1.2]. It addresses the use cases and subsequently derived requirements that have 

been presented in Section 3 of this document. 

The section is structured in two main parts. The first part, Section 4.1, provides a high level overview 

of the third cycle architecture and introduces the extensions and modifications that have been 

proposed in the context of the overall architecture. Section 4.2 then presents each of the proposed 

modifications in more detail. For reasons of clarity, the discussions are structured analogous to the 

use case specifications in the previous section. This allows the reader to easier understand how the 

use cases and resulting requirements have been addressed. 

4.1. Overview of Third Cycle Architecture 

The new requirements addressed by the third cycle design and specification process resulted in 

several new system functions and upgrades to existing ones that were present in the previous 

architecture specification. An overview of the resulting architecture can be found in Figure 2, 

highlighting newly introduced or updated system functions in colour. In the following each of these 

additions and modifications are introduced by briefly explaining their nature and purpose. For a 

detailed description of the new system functionality, the reader is referred to section 4.2. 

A major architectural change represents the introduction of a new subsystem for Federation support, 

which is highlighted in yellow in the top left part of the architecture diagram. It addresses the need for 

different SmartSantander testbed sites to be federated among each by the introduction of the 

Federator, a feature that has been adopted from the WiseBed [WiseBed] base. This feature is also 

referred to in this document as internal federation. The Federator has been designed in such a way 

that it does not introduce a new interface, but instead provides convenient access to different 

SmartSantander testbeds via the existing APIs. Some changes to the underlying data model of 

resource directory have to be made, in the form of additional metadata for describing resources in the 

different testbeds. A second requirement addressed by the Federation support is the external 

Federation with other testbeds in the FIRE community. Through an analysis of existing tested 

frameworks and discussions with the FIRE community several existing standard APIs have been 

identified that are widely supported. These include the Slice Federation Architecture (SFA) for 

managing discovery, access and reservation of experimentation resources and Orbit Management 

Framework(OMF) for experimentation control. Respective APIs are exported to support 

experimentation clients that comply to these specifications through the introduced SFAWrapper and 

OMFv6 system functions. The system functions ensure the translation of the respective API 

invocations to the respective testbed internal system functions. 

The third cycle architecture introduces also new system functions to existing subsystems for the 

support for experiments that rely on Smartphones as experimentation resource. 
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Figure 2: Overview of third cycle architecture.Additons of and mofications to system functions are highlighed in colour. 
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This includes the addition of the Smartphone Experimentation Configuration function (SE Config) to 

the configuration subsystem and the Smartphone Experimentation Server as part of the session 

management subsystem of the server tier. Corresponding functions on the Smartphone side are 

realised by updates to the Deployment, Monitoring and Control Functions of the session management 

subsystem - also referred to as SE Manager functions and the addition of SE and User Preference 

configuration function as part of the resource management subsystem. This allows both the effective 

configuration of experiments for Smartphones that respect user preferences on resource use and 

privacy. Furthermore they allow efficient scheduling of experiments, provisioning of experimentation 

code and experimental data collection. 

In order to support experimentation with scheduled or opportunistic contacts of experimentation 

resources with the testbed infrastructure, delay tolerant network (DTN) capabilities have been added 

to the architecture. As a result provisioning of experimentation code or the collection of 

experimentation data does not have to rely any more on permanent connections to the testbed 

backbone infrastructure. This is achieved by an upgrade of several existing components of the 

architecture, namely the Deployment function of the Session Management subsystem in all three tiers 

of the architecture, the Scheduler on the server tier as well as Resource monitoring in the resource 

management subsystem of the GW and IoT node tier. 

A further new feature that the architecture introduces is the support for the execution of 

experimentation on GW tier devices. For this the Virtual Testbed Device (VTD) support that has been 

initial introduced in the 2nd cycle architecture specification is utilised and further enhanced by the 

addition of the VTD scheduler on the configuration subsystem on the GW tier. The latter manages the 

priority of experimentation code to be run on GW tier devices and that they do not impact the 

performance of the primary system functions. 

The final set of upgrade to existing system functions addresses the challenges of increased end user 

privacy in experimentation. Both PSense Client and PSense Server components of the application 

subsystem are upgraded with security functions such as encryption. 

4.2. Revised specification of system functions 

The previous section provided only an overview of the different architectural additions and upgrades 

in order to support the third cycle requirements and use cases. This section describes in more detail 

how each of the requirements are addressed by the introduction of new features and how the 

proposed architectural extensions and modifications contribute towards it. The structure of the section 

and follows the order of the different use cases introduced in section 3. 

4.2.1. Federation of Smartsantander tesbed sites 

So far, SmartSantander experimenters perform experiments on devices located in a single 

SmartSantander testbed. However, since the testbed sites are similar in terms of their architecture 

and capabilities, an experimenter should be able to use devices of multiple testbeds in a single 

experiment. This will allow users to run large scale experiments and to mix devices and device types 

from the different testbed sites. This kind of federation is called Intra SmartSantander Federation. 
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Generally such federation, and the API interactions described next, was available in basic form  in the 

Testbed Runtime (TR) of the WISEBED project, which SmartSantander inherited. However, due to 

the various enhancements of TR to increase the performance, to allow for the integration of new 

components and to match requirements introduced by SmartSantander, the components and API 

interactions had to be updated and the access to the testbeds’ meta-data has been unified. 

 

Intra SmartSantander Federation architecture 

As shown in Figure 3:, the client application which conducts a federated experiment accesses the 

testbed via the Experimentation Support Interface (ESI) as usual. But instead of connecting to a 

specific testbed, it connects to the Federator component which is used as a proxy between the client 

and the testbeds which resources are to be used. As can be seen in Figure 3:, all components 

present in the (WISEBED compatible) testbeds are present in the Federator as well. 

 

Figure 3: Intra SmartSantander Federation architecture 

These components safeguard the access to the testbed (SNAA), manage reservations of testbed 

resources (RS), manage the experimentation sessions (SM) and provide access to the testbed in 
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means of flashing, resetting, etc. Thus, for the clients there is no difference in accessing a single 

testbed or multiple testbeds at once via the Federator component. 

Since the client features a Controller component, which is responsible for the reception of 

asynchronous messages, the Controller component is present in the federator as well. That is, for the 

testbeds the Federator acts as an experimentation client. 

 

Testbed Meta Data for the Federation 

Since we federate independent testbed sites, their meta-data may be persisted in different ways. This 

meta-data includes the WiseML-based topology description of a testbed as well as configuration data 

of individual nodes (e.g. serial port parameters). Several components of the testbed infrastructure 

(Testbed Runtime) rely on this information to work correctly. E.g., the gateway hosts of a testbed have 

to find out serial port parameters, in order to connect to a device and the portal host has to produce a 

topology self-description in WiseML. 

As depicted in Figure 3:, testbed A manages all meta data in the Resource Directory (RD) which was 

inherited from SENSEI and enhanced by the SmartSantander project. For tesbed B, the meta-data is 

managed in a simple Database Management System (DBMS) which is not further specified. 

In order to be able to treat both meta-data sources identically the DeviceDB interface was created for 

the next release of Testbed Runtime. It abstracts from the way where and how meta-data is stored 

and allows a uniform retrieval (FR190). Independently, the actual description of resources from 

different testbeds should be the unified as well (FR083). 

 

4.2.2. Federation of SmartSantander with external testbeds 

An increasing number of the FIRE facilities deployed in the latest years are converging into OMF/OML 

and SFA as its public interfaces to expose themselves to the outside world. For this reason, the best 

approach to enhance SmartSantander’s federation capabilities with external testbeds is to also 

provide those OMF/OML and SFA interfaces to cover the whole experimentation life cycle. 

OMF Overview 

OMF (cOntrol and Management Framework) is a generic framework for controlling and managing 

networking testbeds developed in the last couple of years mainly by NICTA. The motivation behind 

OMF is to provide the experimenters with a way of defining their experiments in generic terms, by 

using a domain specific language, while hiding testbed specific hardware details. In this sense, OMF 

provides a set of tools to describe and instrument an experiment, execute it and collect its results. 

Nevertheless, OMF does not currently deal with resource discovery and reservation, so these are 

stages that have to be done prior to any OMF interaction with a testbed. 

The OMF framework is also a possible way toward testbed federation as it assumes that several 

testbeds may be jointly involved in the experiments. 
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The key components of OMF are: 

 A description language, named OEDL, which allows the user to create its Experiment 

Description (ED). This ED contains a description of the resources needed for an experiment, 

including their required configuration; a description of the applications to use in an experiment 

and the measurements to collect from them; and a state machine describing the different tasks 

to perform during an experiment, and the time or event that trigger them. 

In the context of SmartSantander, OEDL can be seen as a language similar to the Testbed 

Runtime API scripting language that was introduced in the WISEBED project. However, the 

abstraction that OMF provides means that OEDL is a more generic description language than 

WiseML, which was designed to cover WSN requirements. From now on, the SmartSantander 

experiment description will be named Testbed Runtime Experiment Description (TRED). 

 The Experiment Controllers (EC), which is the entity that is responsible to deploy, control, and 

instrument an experiment on behalf of the user. The EC takes an ED as its input and 

processes it. The EC cooperates with the Aggregate Manager(s) of the testbed(s) involved in 

the experiment, to configure the required experimental resources according to the experiment 

description. Once these resources are configured, the EC communicates with each 

corresponding Resource Controllers, and sends them commands (according to the ED), which 

will effectively realize the experiment. 

In the context of SmartSantander this component works just as the Testbed Runtime scripting 

client, which instead of an ED gets a TRED. 

 The Aggregate Manager (AM) is the OMF entry point in any testbed. It manages all the 

resources that are provided by a given testbed. More specifically, the AM consists of a 

collection of services that allow external parties to request management actions on a set of 

resources, or query their status. It also includes an OML experimentation server that can be 

used to store any experiment results in the testbed domain, for a future query of an 

experimenter. 

The Resource Controller (RC) is an entity that listens for commands issued by an EC, 

executes them, and reports back any information resulting from the command executions. 

Those RCs are entities that reside on each of the resources available within a testbed, but it is 

not a mandatory requirement. 

 The Measurement Points (MP) are specific points inside any application where a set of 

measured metrics can be collected by the OMF/OML instrumentation tools. Those 

components will be covered in the OML section, although MPs were initially defined under 

OMF. 

OMF has had multiple versions through the years, but the latest one, OMFv6, includes a complete 

redefinition of the communication protocol between the different entities that conforms an OMF 

enabled testbed. This protocol, known as Federated Resource Control Protocol (FRCP), uses an 
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Extensible Messaging and Presence Protocol (XMPP) server by using a PUB-SUB mechanism with 

different topics to exchange information between all EC’s, AM’s and RC’s. With FRCP new 

components can be created and/or reconfigured dynamically. On the other hand, OMFv6 provides 

Resource Proxies. They are software entities acting on the behalf of resources, thus they are the 

software that process messages published to resources, and generate any replies. A resource proxy 

may have its instance running on the resource itself or on any other platform which has access to the 

resource. 

OML Overview 

OML (OMF Measurement Library) was developed together with OMF, in order to take care of 

reporting experiment results to a common database. Though it started as an OMF component, OML is 

now autonomous and can be used with or without OMF. 

OML enables real-time collection of data from the various applications being run during an 

experiment. It follows a client/server approach, and consists of two main components: 

 The OML client library provides a C API for applications to collect measurements that they 
produce by allowing experimenters the Measurement Points (MPs) definition inside their 
application source code. The measurement library includes a dynamically configurable filtering 
mechanism that can perform some processing on each measurement stream before it is 
forwarded to the OML Server. OML MPs are quite flexible, and can be configured to send 
information to more than one OML Server. 

 The OML server component is responsible for collecting and storing measurements inside a 
database. Currently, SQLite3 and PostgreSQL are supported as database backend.  

In a traditional OML environment, once an experiment is complete, the stored measurements or 

results can be accessed for further analysis. An experimenter can then manipulate these data using 

SQL queries or export them in some other format for further processing and analysis. However, 

although OML servers usually are database components, an external application which understands 

OML measurements can work as an OML Server as well. This way, it would be possible to receive 

OML measurements in an external Experiment Controller. 

SFA Overview 

SFA (Slice Federation Architecture) has emerged as the de facto standard for enabling federated 

slice-based network substrates to interoperate. It forms the control plane for browsing, allocating and 

reserving resources offered by a federation of heterogeneous testbeds. In an SFA context, testbed-

specific information is captured in a resource model, called a resource specification (RSpec), which is 

an XML transported by the SFA layer. However, SFA itself does not cover such aspects as resource 

model, policies, experiment configuration, experiment execution or data collection. 

SFA also provides a common authentication layer based in X.509 certificates. However, authorization 

management, usually based on local policies, relies on the underlying testbeds. This means that an 

entity can be authenticated even if later it turns out that it is not allowed to perform actions or access 

resources of a particular testbed.  
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SFA designates a set of four main object types that represent the different entities involved in the 

testbed federation: 

 Authorities. These represent testbeds, parts of testbeds to which trust or rights may be 
delegated, and/or communities of users.  

 Resources. These consist of nodes, links, or any other experimental resource provided by the 
testbeds, and exposed to the users.  

 Users. These are experimenters wanting access to resources.  

 Slices. A slice is the basic unit of interaction between users and resources. Slices can be seen 
as a set of virtualized resources connected together to provide a single virtual testbed for an 
experimenter. One can think of a slice as corresponding to an experiment, encompassing all 
the users and resources associated with that experiment. 

In order to become an SFA compliant testbed, its resources must be described in an RSpec that the 

testbed’s aggregate manager can both send and understand. For this purpose, a generic reference 

implementation called SFA Wrapper is provided. This component will interact with the local testbed 

user database, its resource database and the scheduler used for reservations. 

SmartSantander proposed adaptations to OMF-OML-SFA 

An initial approach to transform SmartSantander testbed into and OMF/OML and SFA compliant 

testbed is depicted in the Figure 4. It is important to note that, as illustrated in the figure that this 

approach intends to be a complement to the current SmartSantander platform as it does not imply 

that current federation mechanisms are overridden or. Instead it enables federation with other OMF-

OML-SFA enabled testbeds. 

Although the proposed architecture is based on SFAWrapper, there is an alternative that will be also 

analysed known as AMSoil. The SFA component will then be used to provide authentication, resource 

discovery and reservation. SmartSantander Driver component will interact with the next components: 

 The Resource Directory (RD), named in the functional architecture as resource DB in order to 
get information of the SmartSantander resources. 

 The user accounts DB to authenticate and authorize users accessing the testbed. 

 The resource reservation and the scheduler components for creating the needed slivers inside 
SmartSantander and contribute to slices creation. 

The SmartSantander SFA component covers the requirements FR180 to FR181 and FR185 to 

FR189. 

OMFv6 will be used in the description and provisioning of the experiments. Besides, OML will be used 

in this context for measurement collection both in Native and Service Experimentation. FRCP will be 

used to allow the creation of real time per-experiment RCs, as well as to remove them as soon as all 

resource reservations have ended. By deploying an OMF infrastructure inside SmartSantander 
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requirements FR191 to FR193 and FR196 are covereded. On the other hand, requirement FR194 is 

covered by the OML dynamic measurement points that will be created on request in the proposed 

architecture. 

The OMF/OML interactions with the SmartSantander infrastructure will be different depending on the 

experimentation layer.  

o In Native Experimentation layer, the workflow will involve almost all the session 

management components. 

o In Service Provision layer, the data notification system will be the main component that 

will interact with the resource controllers, in order to gather all the data from the data 

repository.  

OML will also be used in a static way to provide Monitoring capabilities to SmartSantander. This way, 

requirement FR197 is covered as well. 

 

 

Figure 4: Proposed architecture for SmartSantander external federation 

 

4.2.3. DTN support 

In the original global architecture for the SmartSantander platform, the process for image-based 

software reconfiguration on sensor nodes (including mobile nodes) required the following functionality, 
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to be provided by the Deployment blocks at the Portal Server, Gateway and IoT Node tiers 

(SeeFigure 5: The Bundle Layer DTN protocol). 

1. The Portal Server and Gateway Nodes are connected via a network overlay (or messaging 

middleware) for the routing and transfer of messages/commands between all IoT nodes (portal 

server, gateways and sensor/actuator nodes). 

2. When a set of sensor nodes are to be updated with a new binary software image, the image is 

unicasted to the respective Gateway devices to which the sensor nodes (specified in the set) are 

attached/associated. 

3. The Gateway device then initiates node reprogramming by using a multicast-based Over-The-Air-

Programming protocol to transfer image fragments to the respective nodes.  

4. Sensor node devices collect image fragments, send back acknowledgements upon correct 

reception and store them in external flash memory. Once a whole binary image is successfully 

built, the image is loaded in program memory and the node reset to run the new software 

configuration. 

 

Figure 5: The Bundle Layer DTN protocol 

The procedure for reprogramming mobile sensor nodes followed a similar approach in that a 

persistent connection to each mobile via a WAN/GPRS link is used for the dissemination of binary 

WSN software images. 

In our DTN-enabled node software reconfiguration process, we use the functionality provided by DTN 

protocols to isolate delay and overcome network partitions, caused by mobile sensor nodes transiting 

from one gateway coverage to another. However, although our architectural amendments are 

intended for general DTN support for IoT node reprogramming, it is expected due to project 

time/resource constraints that design and implementation effort will concentrate on realising the ”IoT 

Node Reprogramming at the Bus Depot” Use Case. We envisage our delay-isolation solution to be 
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fully integrated with our existing solution for image-based node software reconfiguration. Therefore, 

we plan to augment the functionality of the Deployment function at each tier to provide support for the 

store-and-forward functionality required by DTN-participating devices and the end-to-end reliability 

that sensor node reprogramming entails. To the existing components, given that interactions for 

reprogramming occur in an asynchronous manner, delay isolation should be transparent. 

In particular, we add an additional layer to the protocol stack used for node software reconfiguration, 

called the Bundle Layer, to perform delay isolation and ensure end-to-end reliability across image 

transfers. As illustrated by Figure 5, the Bundle layer (at the Portal Server) intercepts image 

transmissions from the application layer, breaks the bundle (software image) into fragments and 

multicasts then to the corresponding Bundle Layer at the receiving counterpart devices (e.g. Gateway 

devices).  

The Bundle Layer performs delay isolation via transport termination i.e. DTN nodes terminate 

transport protocols at the Bundle Layer. The Bundle Layer therefore acts as a surrogate for end-to-

end sources and destinations. The result is that the conversational lower-layer protocols of low-delay 

regions (e.g. network containing Portal Server and Gateway devices) are isolated at the bundle layer 

from long delays in other regions of the end-to-end path. The Bundle Layer alone supports end-to-end 

messaging. Bundles are typically delivered atomically from one node to the next, independent of other 

bundles, except for optional responses. However, a Bundler Layer may break a single bundle into a 

multiple fragments if, for instance the fragments must be disseminated to different points of contact. 

The delay and intermittent connectivity between Gateway nodes and mobile sensor nodes caused by 

temporary contacts between them is shown by the grey area in Figure 5. In our usage scenario, the 

Bundle Layer performs the following functions: 

1. Fragmentation of software images into bundles to fit in the underlying protocol’s PDU (protocol 

data unit) 

2. Selection of Gateway devices (called DTN routers) for store-forwarding ,where mobile sensor 

nodes are predicted to make contact 

3. Transfer of software bundles to the selected Gateway devices and caching into persistent storage. 

Bundle transmissions may be acknowledged 

4. Upon contact with a target mobile sensor node, it initiates the transfer of the software image 

fragments onto the node. 

DTN Roles 

We define the following DTN roles for devices in the SmartSantander infrastructure: 

 Host – sends or receives bundles but does not forward them. A host can be a source or 

destination of a bundle transfer.  

 DTN Router – Forwards bundles within a single DTN region (the internetwork at the point of 

contact) and may optionally be a host. The Bundle Layer of DTN routers that operate over long-

delay links require persistent storage to queue bundles until outbound links are available. DTN 

routers may optionally support custody transfers i.e. the transfer of the responsibility to do 

retransmissions and send acknowledgements to the bundle source. 
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 DTN Gateway – Forwards bundles between two or more DTN regions and may optionally be a 

host. The Bundle Layer of DTN gateways must have persistent storage and support custody 

transfers. DTN gateways provide time-delayed conversations between the lower-layer protocols of 

the regions they span. In the SmartSantander project context, a DTN gateway can, for instance, 

be a mobile sensor node that acts as data mule between geographically distributed islands of 

sensor sub-networks. Or it can be a multi-homed mobile sensor node that makes opportunistic 

contacts with SmartSantander Gateway devices to upload temporally-aggregated sensor 

measurements or to receive sensor node software updates. 

Custody Transfers for End-to-end Reliability 

DTNs support node-to-node retransmission of lost or corrupt data at both the transport and the bundle 

layer. However, because of the absence of a single transport-layer protocol that operates end-to-end 

across the DTN, end-to-end reliability can only be implemented at the bundle layer. 

The bundle layer supports end-to-end reliability by the means of custody-transfers. Such transfers are 

arranged between the bundle layers of successive nodes in the DTN, at the initial request of the 

source application. As a bundle custodian, a device (having accepted a custody transfer request) 

must store the bundle until (1) another node accepts custody or (2) the expiration of the bundle time-

to-live. The bundle custodian is responsible for retransmissions to the next hop in the event bundle 

fragments are corrupted or lost. The bundle custodian may optionally send back an acknowledgement 

to report the status of an initiated transfer to another DTN gateway/host. 

In the afore-mentioned DTN use-case in Section 3.2, the ‘deployment plan’ is an example of the 

content delivered as part of the custody transfer. 

Architectural Extensions for DTN Support 

To provide support for DTN, the functionality of the Deployment blocks located at the Portal Server, 

Gateway and IoT Node tiers must be extended. Figure 6 shows the functional blocks which will be 

extended in the reference architecture.  

At the Portal Server tier, the following functions are added to implement the Bundle Layer thereby 

fulfilling the requirements listed in Section 3.6 for DTN support: 

 Interception of software image transmission from Experiment Controller or Experiment Scheduler 

 Selection of target DTN routers, based on predicted IoT-node contact, experiment start time and 

software image size (Requirements: FR198, FR199) 

 Dynamic construction of a multicast tree containing all DTN routers with the Portal Server at the 

root (Requirements: FR200, FR201) 

 Fragmentation of IoT node binary software image into bundles of smaller fragments 

(Requirements: FR202b) 

 Dissemination of bundle fragments to DTN routers based on predicted contact durations 

(Requirements: FR202b). 

 Sending of custody transfer request and processing of custody transfer responses (Requirements: 

FR202a) 
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At the Gateway tier, the following functions are added to fulfil the responsibilities the Bundle Layer: 

 Reception and processing of multicast join request. (Requirements: FR200, FR201) 

 Reception and processing of custody transfer request (Requirements: FR202a) 

 Subscription for target IoT-node arrival and contact event notification (Requirements: FR206a, 

FR206b) 

 Bundle/bundle-fragments reception and storage (Requirements: FR203) 

 Transfer of bundle/fragments to DTN gateways as per deployment plan (Requirements: FR204) 

 Retransmission of un-ACKed fragments 

 Sending an ACK containing deployment plan execution results back to source 
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Figure 6: Architectural extensions for DTN-based IoT node software reprogramming
2
. 

As we intend to utilise the current over-the-air programming solution (M)OTAP deployed at the 

Gateway devices and IoT nodes, no extensions are required to the existing Deployment functional 

block on the IoT node tier. The current (M)OTAP feature already supports the delivery of software 

image fragments, the binary image reconstitution and loading in the IoT node’s program memory. 

 

 

                                                           

 

2
 Note: Although this diagram represents the general case, design and implementation effort will focus on realising the 

“IoT Node Software Updates at Bus Depot via DTN protocols” use case. 
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4.2.4. Experimentation on gateway tier devices 

The second cycle architecture introduced the virtual testbed device (VTD) support as a new system 

function of the experimentation support subsystem. It allows the testbed users to create a set VTDs 

as part of an experiment configuration. These VTDs will be available on selected Gateway (GW) 

nodes for the experiment and will allow the execution of experimentation code on GW tier devices.  

Figure 7 presents the respective function components that have been previously identified. They cover 

the requirements FR211 - FR212 through an adequate management of VTDs and their configuration 

with experimentation code and other behavioural properties through APIs provided by the 

experimentation support interface. By invoking VTD related functions on the ESI interface, an 

experimenter can: 

 Select the GWs that require the execution of experimentation code  

 Configure one or more VTD devices on these GWs which will execute the desired 

experimentation code, including the provision of the code and VTD properties such as priority 

level, resource requirements etc. 

 Instantiate or delete configured VTDs on a GW tier node.  

 

Figure 7: The virtual testbed device support can be used for the installation of experimentation code on GW tier 
device. 

In order to enforce the configured behaviour of VTDs on GW nodes, a VTD scheduler is added as 

further system function to GW tier devices. The scheduler takes as input configuration parameters 

provided for a VTD device during configuration (FR213) and is responsible for allocating GW resource 

to (a set of) VTD(s) executing on it. It ensures that the experimentation support plane functionalities 

on the GW are not compromised and that VTDs among each other share resources according to their 

configured priority levels. The VTD scheduler thus addresses the requirements FR214-FR217. 

4.2.5. Experimentation of Smartphones 

SmartSantander's architecture supports the experimentation lifecycle with resources of the IoT node 

tier and the creation of services and applications that exploit the IoT generated data through the USN 

subsystem. At the 2nd year of the project, service level experimentation on smartphones was 

performed with the Participatory Sensing Application by introducing to the architecture a server 

User client 
(experimentation)

VTD configVTD config

Sever tier GW tier

ESI

VTD scheduler
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component Psense Server and Psense client at Testbed server and IoT node tier respectively. As 

described in the use cases included in IR1.4, experimentation on smartphones will pursue a more 

dynamic way of experimentation with smartphones. Experimenters will deploy their experimentation 

code to the end-user smartphones through the platform and then data recorded by the experiment will 

be gathered by the platform and finally dispatched to them. The current way of experimentation on 

smartphones does not allow the direct management of the experiment lifecycle through the 

SmartSantander platform. The experimentation code is simply deployed and executed on 

smartphones through the corresponding app stores of the iPhone/Android platforms. Smartphones, in 

contrast to other IoT devices in SmartSantander platform, are being carried by users. There is thus a 

need for special design components that will guarantee the uninterrupted normal operation of the 

smartphone and the privacy of the user as well. Several issues regarding the integration with the 

SmartSantander architecture have been identified, and some new components that will handle them 

are proposed as follows: 

1. Registration of mobile phone devices into the SmartSantander platform. There is a need for 
installation of a specific application/component on mobile phones that will register the 
smartphone to the platform and manage (run/pause/stop) the deployed experiment. This 
application instantiates “SE and User Preferences Configuration” module, a software 
component where the end-user will give consent to contribute his smartphone and configure 
several parameters of experiment execution (e.g., which ones of the integrated sensors to 
share, how much CPU memory to share, etc.). This application will register through the 
“Resource Registration” component the device to the system. Registration will be handled by 
the “Smartphone Experimentation Server” at the testbed tier. 
 

2. Uploading of smartphone experimentation code to the SmartSantander system. Through an 
ESI experimenters will select the devices (number, type, etc.), reserve them for a time period 
and define an experiment for smartphones. The identified component “SE Manager” will 
consume all the parameters of an experiment and will prepare the experiment as a file to be 
deployed on smartphones.  
 

3. Validate experimentation code by the SmartSantander system. This will be managed by the 
“Sanity Check” component. There is a need for a special sanity check software component 
regarding the smartphone experimentation code for checking specific API calls on 
smartphone-OS. 
 

4. Deployment of the experimentation code to smartphones and execution. Deployment of 
experimentation code will be handled by the already identified components of Session 
Management at IoT tier. There is a new identified component “SE Manager” which manages 
the execution of the experiment and also the interventions of the users. Also there is a new 
identified interface SEI for facilitating the communication of smartphones to the Smartphone 
Experimentation Server. The actual deployment of experimentation code can be realized 
either by sending experimentation code to mobile phone devices directly or by deploying a 
native (iOs, Android) application through the corresponding application market. 
Experimentation deployment will be handled by the “Smartphone Experimentation Server” at 
testbed tier. 
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5. Retrieval of Experimentation Data. The retrieval of the experimentation data from the 
smartphones will be done through the new identified interface – SEI. It will be possible to 
retrieve experimentation messages through a specified online SmartSantander web service.  
The “SE Manager” component will record experimentation data. The recorded experimentation 
messages by the device could then be pushed continuously to a Smart Santander online web 
service, or with a bulk upload at the end of experiment through the SEI. Experimentation data 
pushback to the platform will be handled by the “Smartphone Experimentation Server” at 
testbed tier. 
 

 

Overview of Functionalities of Identified Components 

Figure 8 provides an overview of the functional components that have been identified for the realisation 

of the above envisioned features. The following functions are introduced on the server tier:  

 SE Configuration: This component is responsible for the Smartphone experiment configuration, 

reutilizing and extending functionalities of the Configuration module (synthesis, specification, file 

upload, sanity check, resource selection). This component will cover FR219, FR220. 

 Smartphone Experimentation Server: This server component will manage the scheduling of the 

experiments, the delivery of the experimentation code to the smartphones, the registration of 

Smartphones to RD, the gathering of experimentation data from the smartphones. This 

component will cover FR220 and NFR180, NFR182. 

Furthermore the following enhancements to the IoT node tier are envisioned: 

 SE Manager: This module will manage the experimentation code delivery to the smartphone, the 

execution, the monitoring of the experiment and experimental data recording. Finally, it will deliver 

the recorder data to the Smartphone Experimentation Server. This component will cover FR220 

and NFR180,NFR181, NFR182. 

 SE and User Preferences Configuration: This module inside Smartphone device will manage the 

configuration of the experimentation sharing of the smartphone by the end-user (e.g. allow 

specific sensors, time of day to be used, maximum memory used etc.). The module will register 

the Smartphone to the system. This component will also cover FR218, FR219 and NFR181, 

NFR182. 
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Figure 8: Identified Components for Experimentation on Smartphones 

4.2.6. End-user centric securtity, privacy and trust  

In section 3.5 new use cases have been introduced in order to address security threats in terms of 

privacy from the end user perspective. Those use cases involve personal smart phones being 

exploited for SmartSantander services. The use cases motivated new functional requirements for 

addressing such use cases (NFR180). A careful evaluation of the current SmartSantander 

architecture found concluded that no specific architectural extension are required to support the 

requirement. However some modification the PSense server and PSense client functions may be 

necessary. 

In the following a section briefly outlines guiding design principles that must be taken into 

consideration for further component design: 

 User awareness and willingness: the user should be informed about which personal information 

may be disclosed, and he should have to possibility to cancel application installation on this basis. 

 Anonymization at the source: reports issued from smart phones shouldn’t include any 

identification of the smart phone owner. 

 Encryption: encryption should be used on reports sent from smart phone to testbeds so that no 

external observer (whether over the air or over the Internet) may have the possibility to intercept 

such reports. 
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 Anonymization at the service level: whenever possible, individual smart phone reports should not 

be available at the service level. Only statistics upon groups of anonymized users should be 

provided.  

 Access control at the service level: authorization should be leveraged to avoid wide access to 

service that leverage smart phones, (even when previous principles are respected). 
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5. THIRD CYCLE SMARTSANTANDER ARCHITECTURE REALIZATION 

This section outlines some design guidelines and considerations as starting points for the further 

design and implementation for the aforementioned architectural extensions for WP2 and WP3 

respectively. It considers these for the federation, DTN support and Smartphone experimentation.  

5.1.1. Federation of SmartSantander tesbed sites 

The Federator which is used as proxy between multiple testbeds and a single client, features the 

same components for authorizing, managing and conducting experiments as the (WISEBED 

compatible) testbeds (FR186, FR196). Figure 9:  depicts the API interaction in the intra 

SmartSantander federation case: 

 

Figure 9:  API Interaction in Intra Smart Santander Federation 

The Federator component of Testbed Runtime implements exactly the same APIs (SNAA, RS, SM & 

WSN) as the individual testbeds in the federation. Every call that the client issues to one of the 

Federators API endpoints is transparently forwarded to the individual testbeds. The Federator 

manages the calls in two different ways: 

1. For synchronous API methods, the Federator merges the returned values of the individual 

testbeds and returns them as one result to the client. Example: merged WiseML file when 

calling SessionManagement.getNetwork(). 
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2. For asynchronous API methods, the Federator passes the calls to the federated testbeds, but 

exchanges the clients Controller API endpoint URL with its own. This way, all asynchronous 

replies will be returned to the Federator Controller API endpoint first, which then forwards 

these replies to the client. This way the Federator can track the status of asynchronous calls. 

Example: flashing nodes via WSN.flashPrograms(). The same mechanism applies for device 

outputs and testbed events (e.g. devices being attached/detached), i.e. the Federator 

subscribes to the federated testbeds on behalf of the client and forwards all messages 

received to the client.  

 

5.1.2. Federation of SmartSantander with external testbeds 

An initial approach for inter federation with external FIRE facilities is to transform SmartSantander 

testbed into and OMF/OML [OMF] [OML] and SFA [SFA] compliant platform. It is important to note 

that this approach intends to be a complement to the current SmartSantander platform as it does not 

imply that current federation mechanisms are overridden but instead enables federation with other 

OMF-OML-SFA enabled testbeds. 

In order to cover all experimentation stages, SFA will be introduced in SmartSantander. There are 

several options that can be followed to evolve SmartSantander into a SFA enabled testbed. One 

option is to develop these interfaces from scratch. Alternatively existing libraries can be used, namely 

SFAWrapper and AMSoil. Both libraries provide similar functionalities but the first one is better 

supported by the developers’ community so we will refer to it exclusively in the remaining of the 

document. The SFA component will then be used to provide authentication, resource discovery and 

reservation.  

The SFAWrapper approach requires the development of SmartSantander driver components behind 

the wrapper libraries will interact with the following components in the following way: 

 The Resource Directory (RD) will provide the WiseML formatted file with a detailed description of 

the SmartSantander resources, which will be translated into a valid RSpec format. 

 Once authenticated a valid temporal user will be created in the TR-SNAA user data to be used in 

future reservations. 

 If an authorized experimenter wants to reserve a set of resources for Native Experimentation, TR-

RS will be asked for this resources availability. The generated reservation key will be returned for 

future interactions with the TR-iWSN. 

 If an authorized experimenter wants to reserve a set of resources for Service Experimentation, the 

SmartSubscriber component will be notified to include these resources in the set of running 

subscriptions to the iDAS platform. This component is yet to be developed. 

The second enabler for exposing SmartSantander to external facilities will be OMFv6. It will be used 

in the description and provisioning of the experiments. Besides, OML will be used in this context for 

measurement collection both in Native and Service Experimentation. FRCP will be used to allow the 
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creation of real time per-experiment RCs, as well as to remove them as soon as all resource 

reservations have ended. 

The OMF/OML interactions with the SmartSantander infrastructure will include: 

 All RCs will include one or more OML MP which will be instructed during the configuration stage to 

redirect the desired OML measurements to one or more OML Servers. The SmartSantander AM 

OML Server or any other one in the experimenter domain could be used, but for Service 

Experimentation the later approach should be mandatory in order to avoid information duplicity. 

 In Native Experimentation, RC will also control a Testbed Runtime Experiment Controller (TR-

EC). The RC will have to translate all OMFv6 ED primitives to Testbed Runtime API calls. All 

those Native Experimentation RCs will include a property containing the TR-RS reservation key 

that will be set up during the configuration stage. 

 OML will also be used in a static way to provide Monitoring capabilities to SmartSantander. Those 

OML MPs will be subscribers of the Service Aggregator in the SPGW, and will be configured to 

send all its measurements to the Monitoring OML Server. 

5.1.3. Design Considerations for DTN-Support Realisation 

We illustrate our notion of DTN-based node reprogramming by providing an instantiation of our 

reference architecture using existing components in the SmartSantander platform. This is shown in 

Figure 10 below. 

 

Figure 10: Bundle-Layer-brokered interactions between SmartSantander components for DTN support 
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Transparent Transport Service 

Bundle Layer component instances implement the DTN protocol functionality at the Portal Server, 

Gateway and mobile IoT node. In essence, the delay and intermittent connectivity associated with 

mobile nodes is isolated and made transparent to the components using the transport service for data 

transfers. Therefore, the same transport API must be exported by the BundleLayer component as the 

current message transfer API to components such as the Testbed Runtime. In essence, the 

BundleLayer will use the existing event buses (described in D2.3 [D2.3]) used for enabling 

interactions between nodes belong to the different tiers. 

Bundle Custody Transfer 

Another design consideration is the caching of messages (e.g. software image bundles) at the source 

(Portal Server) and intermediate DTN routers (Gateway nodes). This is necessary for the supporting 

retransmission of messages in the presence of transfer errors. The responsibility of retransmission 

can be handed-over to the next DTN router along the path of propagation. The DTN router then 

becomes the custodian of the received bundles and ensures that these bundles are delivered to the 

next-hop or destination node. The custodian DTN router also has the responsibility of sending an ACK 

back the source (Bundle Layer at Portal Server) to indicate successful delivery of the fragments.  

Custody transfer (shown as CT in Figure 10) from one DTN router to another occurs through an 

exchange of request/response messages. 

Multi-Homed Mobile IoT Nodes 

Although the DTN-protocol is independent of the underlying protocols in the protocol stack, network 

interfaces that offer higher bandwidth for data transfers will improve the efficiency and throughput of 

the DTN protocol. This is because data transfers are constrained by the duration of the contact 

between the mobile IoT node and the Gateway devices. For instance, switching from the 802.15.4 to 

802.11b/g MAC protocols is recommended if a WiFi connection is detected. This assumes that mobile 

IoT nodes are multi-homed and support 802.11b/g connectivity. The support of a TCP/IP stack on top 

of 802.11b/g on the mobile sensor node may be explored but may ultimately not be possible due to 

resource restrictions on the embedded devices. 

Further details about the interface of the Bundle Layer and it’s interactions between existing/additional 

components are provided in the project report deliverable D2.3 [D2.3]. 

 

5.1.4. Experimentation of Smartphones 

Several architectural components have been identified in section 4.2.4 to support the experimentation 

on Smartphone. These are the Smartphone Experimentation (SE) Server and SE Configuration 

components at testbed server level and SE and User Preferences Configuration module and SE 

Manager component at smartphone level. 

At Testbed Server Tier the main component would be the Smartphone Experimentation Server. This 

server component will be the core component that will manage most functionalities regarding 

experimentation with smartphones. It will manage the registration of Smartphones to Resource 

Directory, scheduling of the experiments, the delivery of the experimentation code to the 
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smartphones, the gathering of experimentation data from the smartphones. Moreover, it will employ 

the second identifies component at testbed server level the SE Configuration module. This 

component will be responsible for the Smartphone experiment configuration, reutilizing and extending 

functionalities of the Configuration module realizing/extending functionalities regarding: synthesis, 

specification, experimentation code upload, sanity check, and resource selection of smartphone 

experiments. Regarding implementation issues it will be used/extended already existing service 

components (e.g. RD clients, web services, resource selection, resource registration as in 

Participatory Sensing scenario). 

At Smartphone Tier the main identified component is SE Manager. This module will manage the 

experimentation code delivery to the smartphone, the execution, the monitoring of the experiment and 

experimental data recording. Finally, it will deliver the recorder data to the Smartphone 

Experimentation Server. This module will employ the other identified SE and User Preferences 

Configuration module. This component will manage the configuration of the experimentation sharing 

of the smartphone by the end-user. The user will configure how his smartphone will be used during an 

experiment. He will give access to specific sensors; it would be possible to define time of day to be 

used, set various thresholds like maximum memory used, if my battery is below 20% stop the 

experiment etc. The module will perform also the license agreement with the end-users and will 

register the Smartphone to the system by communicating with the SE Server. As the main targeted 

platform are Android smartphones, in D2.3 several Android technologies are consider for realizing the 

remote programming of smartphones, of sandboxed code execution and monitoring and of secure 

communication schemes of smartphones to the main platform (https, use of certificates etc.).  
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6. CONCLUSIONS 

SmartSantander was conceived to evolve according to three main iterations during the three years’ 

time frame project duration. The consortium has converged towards a final architecture, which 

besides fulfilling and accommodating the requirements identified during the last phase of the project 

also provides the basis for making the platform fully interoperable with FIRE facilities.  

Apart from the requirements intrinsically identified by the work committed from the initial phases of the 

project, we have also addressed as in previous years  the recommendations of reviewers during last 

technical review held in October 2012 [GENREW].  

Bearing in mind all these aspects, the architecture firstly reflects the needs emanating from the 

federation of the SmartSantander sites relying on the TR paradigm. Aiming at exposing the whole 

facility towards the external world the decision was to adopt SFA jointly with OMF and OML. The 

former is aligned with the decision taken in the FED4FIRE [FED4FIRE] project which pursues among 

others the interoperability among all the experimentation facilities. The decision on OMF and OML is 

consistent with what was decided in the FIRESTATION architectural board [FISTA] and assessed by 

the European Commission. Having both OMF and OML will increase the usability of the 

SmartSantander platform, because many experimenters in the community are using such framework 

when designing experiments and collecting data. 

Besides federation it was also considered relevant to analyze the possibilities and implications of 

using WIFI and higher bit rate radio interfaces instead of cellular ones. This has also been linked to 

the concept of DTN aiming at collecting data using an opportunistic approach. Although sophisticated 

solutions might be proposed we will demonstrate such functionality as part of WP3 and relying on the 

equipment already running in the city. The basic idea is to make use of the IEEE 802.15.4 devices 

embedded on top of the public buses for downloading data once they are entering in the bus depot. 

We are aware that the bit rate is not really high, however the key aspects of the concept will be 

demonstrated and once the future equipment will be enriched with higher wireless bit rate interface, 

such as IEEE 802.11x, the solution provided will be equally valid. 

Another important aspect we have addressed involved the experimentation on top of Smartphones. 

This requirement is inherent to the participatory sensing application running in Santander. In this 

document several use cases have been elaborated aiming at gathering the different views of the 

involved stakeholders, that is, the smart phone owner, the experimenter and the manager of the 

experimentation platform. When writing this document we can say that the state of the art does not 

provide yet an enough mature solution. Hence, we will be analyzing and eventually materializing a 

basic implementation. Anyhow, the architecture already reflects the required additions. 

Last but not least, main considerations in terms of security and privacy from the en-user (as a citizen) 

perspective have been included as well as the corresponding requirements. These have been 

analyzed upon the experience we got from SmartSantanderRA and The Pace of the City applications 

running for more than 6 months both of them and with more than 22,000 downloads (April 2013). 
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