
Risk-Aware Distributed Beacon Scheduling
for Tree-Based ZigBee Wireless Networks

Li-Hsing Yen, Member, IEEE, Yee Wei Law, and Marimuthu Palaniswami, Senior Member, IEEE

Abstract—In a tree-based ZigBee network, ZigBee routers (ZRs) must schedule their beacon transmission time to avoid beacon

collisions. The beacon schedule determines packet delivery latency from the end devices to the ZigBee coordinator at the root of the tree.

Traditionally, beacon schedules are chosen such that a ZR does not reuse the beacon slots already claimed by its neighbors, or the

neighbors of its neighbors. We observe, however, that beacon slots can be reused judiciously, especially when the risk of beacon collision

caused by such reuse is low. The advantage of such reuse is that packet delivery latency can be reduced. We formalize our observation

by proposing a node-pair classification scheme. Based on this scheme, we can easily assess the risk of slot reuse by a node pair. If the

risk is high, slot reuse is disallowed; otherwise, slot reuse is allowed. This forms the essence of our ZigBee-compatible, distributed, risk-
aware, probabilistic beacon scheduling algorithm. Simulation results show that on average the proposed algorithm produces a latency

only 24 percent of that with conventional method, at the cost of 12 percent reduction in the fraction of associated nodes.

Index Terms—IEEE 802.15.4/ZigBee, tree topology, beacon scheduling, convergecast.

Ç

1 INTRODUCTION

A Wireless Personal Area Network (PAN), as defined by
IEEE 802.15.4 [1], comprises radio devices that are

characterized by low power, low data rate, short commu-
nication range, and low cost. A PAN is initiated by a PAN
coordinator. To facilitate periodic power-saving operations,
PAN coordinators have the option to enable the beacon
mode by defining a superframe. A superframe delineates the
timing structure of activities in a PAN, and consists of an
active and an inactive period (Fig. 1). The active period
begins with a beacon frame, by which nearby devices can
identify the presence of the coordinator and thereby join the
PAN by making association1 with the coordinator. Following
the beacon is a number of time slots used for data exchange
between the coordinator and associated clients. In the
inactive period that follows the active period, no data traffic
is expected in the PAN so devices can either enter power-
saving mode or attempt communication with devices in
other coexisting PANs.

IEEE 802.15.4 only supports star topologies for PANs.
The ZigBee specification [2] further specifies how to
organize a number of IEEE 802.15.4 devices into a tree or
mesh network topology. In a ZigBee tree network, the root
is called the ZigBee Coordinator (ZC), internal nodes are

called ZigBee Routers (ZRs), and leaf nodes are referred to
as ZigBee End Devices (ZEDs).

1.1 Problem Statement

In a ZigBee tree network, every ZC/ZR should periodically
broadcast its own beacon. The ZC/ZR can then exchange
data with its children in the active period associated with the
beacon. Similarly, every ZR/ZED should track its parent’s
beacon to maintain time synchronization and exchange data
with its parent. However, concurrent transmissions of
beacon or data frames from multiple ZC/ZRs may cause
collisions at intended receivers and give rise to reception
failures—a phenomenon termed beacon collision.

We could shift active periods of neighboring ZC/ZRs to
avoid potential beacon collisions. More specifically, when a
new ZR joins the network, it determines the time offset of its
beacon transmission relative to its parent’s.
active periods is disallowed when such arrangement may
give rise to beacon collisions. For example, the specification
[2] states that the active period of a ZR shall not overlap
with that of any physical neighbor (i.e., any device within
communication range) or of the parent of any physical
neighbor. Prior work [4], [6], [7] even disallows the

692 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

. L.-H. Yen is with the Department of Computer Science and Information
Engineering, National University of Kaohsiung, No. 700, Kaohsiung
University Rd., Nan Tzu Dist., Kaohsiung 811, Taiwan, R.O.C.
E-mail: lhyen@nuk.edu.tw.

.

can be divided into nonoverlapping time periods called
beacon slots, each of which has a duration equal to SD. It
follows that the number of available beacon slots in a BI is
2BO�SO. This value is typically large to yield an energy-
conserving low duty cycle (between �0:1% and �2%
regardless of the frequency band [2]).

The extent of a tree-based ZigBee network is controlled
by parameters Lm, Cm, and Rm (Table 1). According to the
ZigBee specification, the ZC is at depth 0 and devices at
depth Lm can only be ZEDs, not ZRs. Let TðLm; RmÞ be the
maximal possible ZigBee tree (disregarding ZEDs) that can
be formed, given Lm and Rm. The number of ZC/ZRs in
TðLm; RmÞ is

PLm�1
i¼0 Rmi ¼ RmLm�1

Rm�1 . Therefore, if

2BO-SO � RmLm � 1
Rm� 1

; ð1Þ

then each ZC/ZR can be assigned a unique beacon slot for
nonoverlapping beacon transmissions. If (1) does not hold,
which may happen in practice, some beacon slots must be
reused to accommodate all possible ZRs in the network.

Slot reuse may give rise to beacon collisions. Beacon
collisions may incur two different types of “harm,” depend-
ing on whether the victim has already joined the network:

. Transmission failure. This happens when a device v
interferes with other device w already in the tree by
taking the same beacon slot of w’s parent’s upon v’s
arrival. Refer to Fig. 3 for a possible scenario. The
victim in this case (device w) may suffer from the
beacon collisions by experiencing high bit error
rates, losses of the synchronization with its parent,
or low link-layer throughput. This kind of harm is
considered unacceptable and should be avoided by
any beacon scheduling scheme.

. Less associable ZC/ZRs. The amount of ZC/ZRs
accessible to a device joining the network may be
lessened due to beacon collisions from two or more
existing ZC/ZRs. Refer to Fig. 4 for a possible cause,

where w is a common physical neighbor of u and v.
We assume that all collided beacons and data frames
are garbled. Therefore, w cannot associate with
either u or v. Node w may still find and associate
with another ZC/ZR, but there is a nonzero
probability that w fails to join the tree due to the
absence of other associable ZC/ZRs.

Regardless of the slot-reuse rule, the complete tree and
physical topology must be available to make a slot-reuse
schedule absolutely collision free. This requirement is
considered impractical due to the way by which ZigBee
trees are constructed. A device must hear beacon frames
from a ZC/ZR before it can send a join request to the ZC/
ZR. Before receiving the request, the ZC/ZR is not aware of
the presence of that device. This means that ZC/ZR’s
beacon transmission schedule is determined with only
partial knowledge of the network topology. Beacon colli-
sions are thus inevitable. Fortunately, we can carefully
reuse beacon slots to avoid the harm of transmission failure;
the only price is lessened associable ZC/ZRs.

The way by which ZigBee trees are constructed also
implies that any ZigBee-compatible beacon scheduling
method should be an online algorithm by nature: slot
numbers are assigned while tree construction is in progress. Our
algorithm is ZigBee-compatible because it respects exactly
this principle.

A ZED/ZR is allowed to send frames to its parent only
during the parent’s active period. So, a ZR in fact should
participate in two active periods within a BI. The one

694 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

TABLE 1
Partial List of Symbols

Fig. 3. An instance of transmission failure due to beacon collisions.

Fig. 4. An example of lessened associable ZC/ZRs due to beacon
collisions.

associated with its parent’s beacon is to exchange data with
its parent. The other, which is associated with its own
beacon, is to exchange data with its child devices. If a ZR’s
active period is placed after its parent’s in a schedule, all
packets that it receives from its children during the current
superframe will not be forwarded to its parent until the next
superframe. Similarly, a ZR is unable to receive packets
from its parent and then forward them to its children within
the same superframe, if the ZR’s active period is placed
before its parent’s. Therefore, uplink (from a device to its
parent) and downlink (from a ZR to its child) packet
delivery latencies are also determined by beacon schedul-
ing. The total packet delivery latency along a path in the
tree can be minimized if transmissions along the path are
arranged in sequence. Such a schedule is called cascading.

For the ensuing discussion, most of the symbols used are
summarized in Table 1.

3 RELATED WORK

The beacon collision problem in ZigBee tree networks is
similar to convergecast tree scheduling (CTS) problem in
wireless sensor networks (WSNs). Convergecast is a com-
munication primitive that enables the delivery and aggrega-
tion of data from each sensor node to a collecting point
called sink. The CTS problem concerns how to utilize a tree
rooted at the sink for convergecasting with Time Division
Multiple Access (TDMA) used as the underlying medium
access control (MAC) protocol. The objective is to allocate a
time slot to each pair of nodes for data transmission so as to
minimize the incurred latency while eliminating potential
transmission collisions. This problem has been proven to be
NP-hard [8]. Existing methods imposed different assump-
tions and requirements. Some approaches [5], [9] assume the
use of Code Division Multiple Access (CDMA) combined
with TDMA as the underlying MAC scheme so as to
increase the possibility of simultaneous data transmissions.
Some approaches generate a transmission schedule for
every node after a tree is given or constructed [10], [11], [12],
some determine the schedule before the tree construction
[8], and some others generate the schedule while the tree is
under construction [5], [9].

Despite these design variations, two common properties
of the aforementioned approaches make them not ZigBee-
compatible. The first is the adoption of pairwise scheduling
model, which demands one time slot for each pair of nodes.
In contrast, each ZR in a ZigBee tree exchanges data with all
of its child nodes within the same active period. Therefore,
only one schedule can be arranged for the one-to-many
communication between a ZR and all its children. Fig. 5
illustrates the difference between pairwise scheduling and
the scheduling for ZigBee tree networks. In pairwise

scheduling, node 3 there can reuse the time slot of node 5
to transmit its data to node 1 as there is no conflict between
them. However, in a ZigBee tree network, transmissions of
data from ZR 3 and ZR 4 to ZR 1 take place at the same
active period (the beacon slot of ZR 1). Therefore, if we
overlap the data transmission from ZR 3 to ZR 1 with that
from ZR 5 to ZR 2, the transmission from ZR 4 to ZR 1 may
collide with that from ZR 5 to ZR 2.

The second property is the requirement of full knowl-
edge of conflict or interference relationship among nodes to
yield an interference-free schedule. A commonly adopted
model is to assume that two nodes that are separated by
n hops or less in the physical topology or with a distance of
d unit length or less will interfere with each other. This
requirement is not practical in our context as only partial
knowledge of conflict or interference relationship is avail-
able to ZRs when they schedule their beacon slots.

The beacon collision problem in ZigBee tree networks
has not been addressed until recently. To avoid potential
beacon collisions, the Beacon-Only Period approach [4] lets
all ZC/ZRs synchronize to the same superframe structure
with variety in beacon transmission time. More specifically,
an additional time window for contention-free beacon
transmissions is added to the beginning of each superframe
to prevent possible beacon collisions. Beacon-Only Period
demands a considerable change to the standard and is
therefore not ZigBee-compatible.

An intuitive approach to ZigBee-compatible beacon
scheduling is to completely avoid reusing beacon slots. In
[3], the ZC allocates an exclusive beacon slot to each ZR
upon the ZR’s associations with the network. Since all ZRs
use exclusive beacon slots, beacon collisions are impossible
but the number of ZRs that can be accommodated by the
network is limited. The resultant schedule is also not
optimal in terms of message latency. Superframe Duration
Scheduling (SDS) [4] assumes a configuration with hetero-
geneous BI/SD settings. It determines whether the given
configuration is schedulable, and provides a collision-free
schedule that may span several superframes when the
answer is positive. However, SDS still does not consider
reusing beacon slots.

Spatial reuse of beacon slots is the key to minimizing the
latency of data delivery. Koubâa et al. [4] suggested using
the ZC to collect location information of all ZRs and
determine which group of ZRs can use the same beacon slot
without beacon collisions. They presented the rule for slot
reuse but did not detail how to realize it. Pan and Tseng [6]
investigated the problem of finding a collision-free schedule
for ZigBee tree networks that minimizes the maximal
convergecasting latency. They proved that this problem is
NP-hard and proposed two heuristic scheduling algorithms,
namely centralized tree-based assignment and distributed
slot assignment (DSA). Centralized tree-based assignment
requires complete topology information as input and is not
much better than DSA. In DSA, each node u chooses the slot
that gives the lowest latency with respect to u’s parent, but at
the same time does not collide with the slots occupied by the
nodes in u’s 2r -neighborhood (r is the radio range).

In [7], the authors studied how to minimize the latency
of broadcasts from the ZC to every end device as well as
convergecast latency at the same time. The resultant

YEN ET AL.: RISK-AWARE DISTRIBUTED BEACON SCHEDULING FOR TREE-BASED ZIGBEE WIRELESS NETWORKS 695

Fig. 5. An example illustrating the property of pairwise scheduling.

schedule demands a modification on the original ZigBee
superframe structure to allow each ZR to participate in
four active periods within a BI, two for cascading
convergecast schedules and the other for cascading broad-
cast ones. This work also considers the same 2r -neighbor-
hood interference model.

We argue that the rule imposed by prior work for slot
reuse is, however, too restrictive. The point is that reusing a
beacon slot should be safe as long as there is no victim of
such reuse. The schemes in [4], [6], [7] avoid allocating a
ZR’s beacon slot to another ZR if they are physical
neighbors or have physical neighbors in common. By this
rule, ZRs 1 and 3 in Fig. 2 are not allowed to take the same
beacon slot, since they share a common physical neighbor
(i.e., the ZC). However, any ZR’s beacon slot is for this ZR
to exchange data with its children, not for data exchange
with its parent. Since child nodes of ZRs 1 and 3 do not
interfere with each other, reusing ZR 1’s beacon slot at ZR 3
in fact does not make any victim. This kind of slot reuse is
permitted by the ZigBee specification. However, the
specification inhibits slot reuse between physical neighbors,
though such a reuse does not necessarily make a victim. The
ZR pair ð2; 6Þ in Fig. 2 is an example. As long as neither ZR 2
nor ZR 6 has a child in the future, no node will suffer from
the slot reuse between ZR 2 and ZR 6.

In a preliminary version of this paper [13], we have
presented a systematic approach for identifying the cases
when slot reuse is relatively safe. This is done by classifying
node pairs into different pair types, and calculating the
associated risk probability. High-risk probability means the
corresponding node pair would at a high probability
prevent a future neighboring node from joining, and the
node pair should therefore not share a beacon slot.
Conversely, low-risk probability means it is relatively safe
for the node pair to share the same beacon slot. This paper
enhances our previous work by developing a more rigorous
analysis on risk probabilities, detailing the algorithm for
parent and slot selections with implementation details, and
performing more thorough simulations.

4 PROBABILISTIC RISK-AWARE BEACON

SCHEDULING

In this section, we first describe our node-pair classification
scheme, then our risk probability assessment methodology,
and finally our ZigBee-compatible, distributed, risk-aware,
probabilistic beacon scheduling algorithm. The node-pair

classification scheme and risk probability assessment
methodology allow the algorithm to reduce latency by
reusing beacon slots, while still minimizing the risk of new
nodes not being able to join the tree.

4.1 Node-Pair Classification

Our classification rule of node pairs demands (and only
demands) local knowledge of neighborhood and parent-
hood relations. We use N ðuÞ to denote the set of u’s physical
neighbors. Assuming symmetric communication model, we
have v 2 N ðuÞ()u 2 N ðvÞ for all device pair ðu; vÞ. We also
denote by CðuÞ the set of u’s children in the ZigBee tree that
u joins. Note that CðuÞ � N ðuÞ. We classify a ZC/ZR pair
ðu; vÞ as one of the following types (Fig. 6):

. Inhibited pair. u and v are physical neighbors, and
either u or v has a child; or, u and v are not physical
neighbors, but u and v have a common neighbor
which is a child of either u or v.

. Visible pair. u and v are physical neighbors but
neither u nor v has any child.

. Hidden pair. u and v are not physical neighbors but
have physical neighbors in common, although all
these physical neighbors are neither u’s nor v’s
children.

. Unrelated pair. u and v are not physical neighbors,
neither do they have physical neighbors in common.

The difference among various slot-reuse policies, includ-
ing ours, is summarized in Table 2. From this table, we can
see our policy reuses beacon slots to the furthest extent.

If an instance of slot reuse causes beacon collisions to
devices (ZRs or ZEDs) already in the network, we call such
reuse damaging in the sense that it may cause transmission
failures. A slot reuse between a pair of nodes ðu; vÞ is
damaging only if u’s and v’s beacons can collide at a device
w that is already a child node of either u or v. Therefore, slot
reuses by IP are damaging (we have already seen an
example in Fig. 3) and thereby not allowed by any known
beacon scheduling scheme.

A slot reuse between a pair of nodes ðu; vÞ is risky if it can
lessen accessible ZC/ZRs for a future node w. One possible
cause for the lessening is that w happens to be a common
physical neighbor of u and v (Fig. 4). For this cause, slot
reuses by IP, VP, and HP are all risky. A slot reuse by
ðu; vÞ 2 UP is risky only if u and v are close enough to allow
a common physical neighbor in between. However, the
absence of such common physical neighbor for now (which
qualifies u and v as an UP) does not imply the existence or
nonexistence of such neighbor in the future. This is why the
corresponding entry in Table 3 is marked “Maybe.”

For slot reuses by ðu; vÞ 2 VP , there is another cause for
the lessening of accessible ZC/ZRs. A future node (say, w)
may hear beacon signal from one of these two nodes (say, u)

696 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

Fig. 6. Proposed classification tree for identifying the type of a ZC/ZR
pair ðu; vÞ.

TABLE 2
Comparison of Slot-Reuse Policies

but not from the other (v is a hidden terminal to w). Because
beacon signal is broadcasted unidirectionally, the beacon
signal from u to w is not interfered by v’s transmission.
However, if w transmits association requests to u, the
requests can collide with v’s transmission at u on the same
beacon slot. Refer to Fig. 7 for an illustration. The collision
causes the failure of the association between w and u and
thus lessens the amount of ZC/ZRs that are associable to w.

In summary, as opposed to existing proposals, we
propose reusing beacon slots by VPs, HPs, and UPs when
the risk is low. Given any online beacon scheduling
algorithm that uses only local topological information,
there is no guarantee that a good schedule would not
become a bad schedule when a new node joins the network
later, but our approach is to minimize such probability.

4.2 Assessment of Slot-Reuse Risk

A key task in our algorithm is to estimate the risk
probability of slot reuse for a given device pair ðu; vÞ based
on the current neighborhood and parenthood knowledge.
Our estimate does not assume the knowledge of the
physical distance between u and v, or the total number of
nodes. We assume that the deployment of ZigBee devices is
random yet follows a uniform distribution over a region R.
Let A be the size (area) of R. Each device is assumed to have
an effective communications range of r . A piece of area in R
is said to be covered by a device u and termed u’s coverage
if every point in this area is within the effective commu-
nications range of u. We use J ðu; vÞ to denote the size of the
region jointly covered by two devices u and v, and use
dðu; vÞ to denote the physical distance between them.

It is well known that the radio coverage of a wireless
transmitter is not a perfect disk. A more realistic signal
propagation model may consider random variations in path
loss at different locations [14], [15] or in different directions
[16]. Consequently, data transmission between a pair of
nodes becomes a probabilistic event with probability
distribution being a function of the distance or direction
between the transmitter and the receiver. The proposed
node-pair classification and associated analyses are based
on the abstraction of physical neighbors, which is a binary
relation in the sense that two nodes are either physical
neighbors or are not. Such a relation requires the setting of a
threshold on packet reception probability for the judgment
of physical neighbors with respect to a transmitter.
Consequently, the transmitter’s effective communications
range would be irregular. Nevertheless, we can always find
a lower bound of the transmission range, within which any
device can certainly communicate with the transmitter, or
an upper of the range, beyond which no devices are able to
successfully receive the transmitter’s data. The notation r in
our definition can be interpreted as the lower bound, the

upper bound, or the mean value of the transmission range,

in which case the derived analytic results (presented in the

following) become essentially the best base, the worst case,

or the average-case risk values.

Lemma 1. The expected area of the region jointly covered by two

uniformly distributed nodes u and v is

E½J ðu; vÞ� ¼
� � 3

ffiffiffi
3
p

4

� �
r 2 if dðu; vÞ � r;ffiffiffi

3
p

4
r2 if r < d ðu; vÞ � 2r:

8>><
>>:

The proofs of Lemma 1 as well as other theorems are

given in the Appendix, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TMC.2011.88.
A node placed near the boundary of R will cover less

area than expected, as part of its coverage is outside R. This
is referred to as the border effect. To avoid clumsy results
caused by the border effect, the following analysis assumes
that the region covered by any node is completely within R.
If R is a rectangle area, the assumption can be achieved by
adopting the torus convention [17], which turns a flat
rectangle into a torus. With this assumption, the probability
of link occurrence [18] is p¼ �r 2=A. Our core result consists
of Theorems 1-3.

Theorem 1. Assume nodes are uniformly distributed in a region

R of size A , and A 	 �r 2. Suppose that a pair of nodes

ðu; vÞ 2 VP are using the same beacon slot when a new node w
joins. Denote by PV ðu; vÞ the expected probability that w
suffers from the harm caused by the slot reuse between u and v.

We have PV ðu; vÞ ¼ ð1þ 3
ffiffi
3
p

4� Þp, where p¼ �r 2=A.

Theorem 1 is proven with the help of the inclusion-

exclusion principle and the result of Lemma 1. It indicates

that PV ðu; vÞ
 1:41p, so a large communications range

implies a high probability of beacon collisions between

nodes in a VP.

Theorem 2. Denote by PH ðu; vÞ ðresp: PUðu; vÞÞ the expected

probability that a joining node w becomes a victim of slot reuse

between u and v when ðu; vÞ 2 HP (resp. ðu; vÞ 2 UP).

Furthermore, denote by P�Uðu; vÞ the expected probability that

a joining node w becomes a victim of slot reuse between u and

v when ðu; vÞ 2 UP, with the additional condition that

r < d ðu; vÞ � 2r . Let k be the number of neighbors of v. Then,

PH ðu; vÞ and PUðu; vÞ are related to P�Uðu; vÞ by

YEN ET AL.: RISK-AWARE DISTRIBUTED BEACON SCHEDULING FOR TREE-BASED ZIGBEE WIRELESS NETWORKS 697

TABLE 3
Harm of Slot Reuses by

Different Types of Node Pairs

Fig. 7. Potential data collisions due to the slot reuse between
ðu; vÞ 2 VP .

Rm ZRs among its children, and has depth ðLm � 2Þ
or less, and pickSlot(� , u) returns a nonnegative slot
number s, then u associates with � as a ZR and starts
using beacon slot s. Otherwise, repeat the check with
the next-ranking member of � until all members of
� have been checked. Note that the depth check in
this step is for determining whether u can join as a
ZR or only as a ZED.

2. If there is no member of � that u can associate with
as a ZR, then u associates with the first-ranking
member of � as a ZED.

The pseudocode of the function pickSlot() in the proce-
dure above is given in Algorithm 1. On line 4 of the
algorithm, s is iterated starting from the closest value to s�

until a suitable value is found. This design is for efficient
convergecast.

Algorithm 1. pickSlot(� , u)

1: Let s� be � ’s slot

2: Let smax be total number of slots

3: for i ¼ 1 to total smax � 1 do

4: s ðs� � i Þmod smax

5: harm 0
6: for v 2 N ðuÞ or v 2 fN ðwÞjw 2 N ðuÞg do

7: if v’s slot equals s then

8: Evaluate the risk of re-using v’s slot

9: pair type of ðu; vÞ getPairType(u, v)

10: if ðu; vÞ 2 IP then

11: harm 1
12: else ifðu; vÞ 2 VP then

13: harm 1 at probability PV

14: else if ðu; vÞ 2 HP then

15: harm 1 at probability PH

16: else if ðu; vÞ 2 UP then

17: harm 1 at probability PU

18: end if

19: end if

20: if harm ¼ 1 then

21: break . Continue evaluating remaining slots

22: end if

23: end For

24: if harm ¼ 0 then

25: Neighbors’ slots are risk-wise compatible

with s, so

26: return s
27: end if

28: end for

29: Return -1 . Negative value signifies failure

The proposed algorithms assume that u has the follow-
ing information about its neighbors:

1. their IDs;
2. their slot numbers;
3. whether they have children;
4. their parent’s ID;
5. their neighbors’ IDs;
6. their neighbors’ slot numbers.

With this information, getPairType() can detect all IP,
VP, and HP but not UP (see Algorithm 2). Note that if u and
v are an UP, then v can neither be an immediate neighbor

nor a second-hop neighbor of u, and the function
getPairType() would not even be called.

Algorithm 2. getPairType(u, v)

1: if v 2 N ðuÞ then . u , v are neighbors
2: if u has children or v has children then

3: return IP . Left-most leaf in Fig. 6

4: else

5: return VP

6: end if

7: else . u , v are not neighbors

8: hasCommonNeighbor 0
9: for each w 2 N ðuÞ do

10: if v 2 N ðwÞ then

11: if w 2 CðuÞ or w 2 CðvÞ then

12: return IP . Right-most leaf in Fig. 6

13: end if

14: hasCommonNeighbor 1
15: end if

16: end for

17: if hasCommonNeighbor ¼ 1 then

18: return HP

19: else

20: return UP

21: end if

22: end if

Table 4 lists all the variants of the aforementioned core
algorithm. The variants are labeled according to whether
they are distributed (D) or centralized (C), and which pair
type they allow for slot reuse (V, H, U). For example, the
distributed algorithm that allows slot reuse by VPs
(probabilistically), HPs (implicitly), and UPs (implicitly) is
labeled DVHU. Note that all variants reject slot reuse by IPs.
To reject slot reuse by VPs/HPs/UPs, the probability PV /
PH /PU on line 13/15/17 of Algorithm 1 has to be set to 1.
We elaborate on the variants as follows:

. DVHU, DHU, and DU. Distributed algorithms
cannot detect UPs; hence, these variants accept slot
reuse by UPs implicitly. DU rejects both VPs and
HPs, and in this sense it implements the slot reuse
strategy proposed by prior work [4], [6] in the
literature. Like DSA [6], these variants make a node
aware of the slots occupied by the node’s two-hop
neighbors, but unlike DSA, these variants do not
achieve this by doubling the radio range from time
to time. Doubling the radio range may confuse
some nodes about who their neighbors really are;

YEN ET AL.: RISK-AWARE DISTRIBUTED BEACON SCHEDULING FOR TREE-BASED ZIGBEE WIRELESS NETWORKS 699

TABLE 4
Algorithmic Variants

furthermore, some RF transceivers such as the
CC2480 may not support adjustment of transmis-
sion power. Instead, in DVHU, a node embeds
information about its neighbors’ slots in the beacon
payload in the manner described in Section 4.4.

. CVHU, CHU, CU, C. With complete topology
information, a ZC can detect all pair types. From a
practical viewpoint, these variants are much less
scalable and much less energy-efficient than the
distributed variants. We only mention them here for
comparison with the distributed variants later.

In summary, our core algorithm is ZigBee-compatible
because it can be executed while the ZigBee tree itself is being
formed. It is distributed because only local information is
required. It is risk aware, because it can calculate the risk of
slot reuse by using Theorems 1 and 2. It is probabilistic
because it accepts/rejects slot reuse at a probability exactly
dictated by the calculated risk.

4.4 Implementation Detail

The proposed algorithms require a node to broadcast
information about its neighbors (see Section 4.3) in its
beacon frames. The beacon frame field that can be used for
its purpose is the beacon payload. In IEEE 802.15.4-2003, the
beacon payload is an optional field used for security suite
specification [1, p120]. In ZigBee-2007 (which is based on
IEEE 802.15.4-2003), the beacon payload is used for
signaling the network (NWK) layer instead [2, p. 414]. In
both cases, the beacon payload is processed on the NWK
layer, and can be up to 52 bytes long [1, p. 134]. For our
purpose, we still use the first 15 bytes of the beacon payload
for signaling the NWK layer, but the remaining 37 bytes to
carry information required by the proposed algorithms.
This arrangement requires the NWK layer to be modified,
but on the protocol level, this modification remains
compatible with ZigBee-2007.

Thirty seven bytes in the beacon payload is however not
enough to carry all relevant information about a node’s
neighbors. As a remedy, we propose distributing the
information in a number of “beacon fragments.” One
beacon fragment refers to the beacon payload of a single
beacon frame. One beacon fragment is broadcast in a

beacon slot. Table 5 shows the beacon fragment format that
supports up to eight beacon fragments, or equivalently
32 neighbors (since each beacon fragment can record
information about four neighbors at most). The proposed
format also supports at most 2BO-SO ¼ 28 beacon slots (since
1 byte is allocated to the slot number). The limit on the
number of beacon slots is reasonable since the standard
states: [2, p. 407]

“It is recommended that a tree network utilize a superframe
order of 0, ... and a beacon order of between 6 and 10, ...”

5 SIMULATION RESULTS

The purpose of the simulations is

1. to compare the algorithms listed in Table 4;
2. to compare the policies for choosing a parent;
3. to compare DVHU with DSA [6].

Metrics. For measuring latency, two metrics are defined:
average maximum latency [6] and average latency. Average
maximum latency is defined as

P
i L i =maxði Þ, where i

indexes simulation runs, and L i is the maximum latency
corresponding to the i th simulation run. Average latency is
the more conventional notion of the average of average
latencies of all simulation runs. We are generally interested
in 1) how these metrics vary with network size when
network density is fixed; and 2) how these metrics vary
with network density when the simulation area is fixed. To
be explicit, we define network density as the average
number of neighbors a node has.

Simulation mechanics. Nodes are pseudorandomly
distributed in a square simulation area of l � l (l is the
length of the area) with the ZC in the center. When the
network density is fixed, nodes are added to the simulation
area until the average number of neighbors per node
reaches the specified level. The torus convention is used to
cope with border effects.

5.1 Comparison of the Algorithms in Table 4

As evident in Fig. 9, there are four performance categories:

1. Algorithms DVHU and CVHU perform similarly (for
reasons explained later) and are the best performers.

2. Algorithms DHU and CHU perform similarly and
are quite worse than the previous category. This
observation confirms that allowing slot reuse by
VPs judiciously, as the previous category does,
reduces latency.

3. Algorithms DU and CU perform similarly and are
much worse than the previous category. This
observation confirms that allowing slot reuse by
HPs judiciously, as the previous category does,
reduces latency.

4. Algorithm C is the worst performer since it does not
allow any slot reuse at all. This serves as the
benchmark for the worst performers in beacon
scheduling algorithms.

Fig. 9 shows that the centralized algorithms offer hardly
any advantage over the distributed algorithms. This out-
come can be explained as follows: Recall that since
distributed algorithms cannot detect UPs, they accept slot

700 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

TABLE 5
Beacon Fragment Format for Distributed Algorithms

reuse by UPs implicitly. Meanwhile, the centralized algo-
rithms can detect UPs, but the risk probability of slot reuse
by UPs (PU) is typically so close to zero (see Fig. 8 for
examples) that the centralized algorithms almost always
accept slot reuse by UPs. With identical policy toward VPs
and HPs, and almost identical policy toward UPs, a
distributed algorithm and its centralized counterpart are
expected to perform almost identically in the latency metrics.

Commenting on the metrics themselves, we note that by
virtue of Fig. 9, both metrics average maximum latency and
average latency yield similar comparison of the algorithms.
However, average latency gives lower standard deviations
(data not shown). In the following, we will continue using
average latency and drop average maximum latency.

5.2 Comparison of Parent-Selection Policies

In the previous simulations, among the neighbors which
satisfy the Rm/Lm/Cm constraints, a node chooses the
neighbor with the minimum tree depth as the parent,
consistent with the ZigBee standard [2, p352]. However, this
policy does not always lead to a tree configuration with the
least average latency. We explore three other parent-
selection policies. The four parent-selection policies being
compared are hence:

. Depth. The neighbor with the minimum tree depth
is chosen as the parent.

. Depth then slot. Neighbors are sorted primarily in
ascending order of the tree depth, and secondarily in

descending order of the slot number. The first-
ranking neighbor is chosen as the parent.

. Slot. The neighbor with the maximum slot number
is chosen as the parent.

. Slot then depth. Neighbors are sorted primarily in
descending order of the slot number, and seconda-
rily in ascending order of the tree depth. The first-
ranking neighbor is chosen as the parent.

Fig. 10 shows that the slot-then-depth policy results in
the least average latency, while using the depth parameter
alone as suggested by the standard actually results in the
highest average latency. While the slot-then-depth parent-
selection policy recommended here is not the same as the
depth-only policy specified in the standard, any ZigBee
implementation that implements our policy remains inter-
operable with other ZigBee implementations, and thus
should be considered standard compliant.

An interesting feature of Fig. 10a is the bend between
l ¼ 100 m and l ¼ 140 m (which also exists but not as
obvious in Figs. 9a and 9b). The reason can be understood
as follows: To maintain a constant network density with a
fixed radio range, the number of nodes n / l2. As l
increases from 100 to 120 m, n increases by 44 percent. At
r ¼ 25 m, many of the 44 percent additional nodes are still
distributed close to the ZC in the center. This results in
lower average latency. As l increases further, the nodes
become more dispersed from the center and the average
latency starts to increase.

YEN ET AL.: RISK-AWARE DISTRIBUTED BEACON SCHEDULING FOR TREE-BASED ZIGBEE WIRELESS NETWORKS 701

Fig. 9. Comparison of the algorithms in Table 4 in terms of average maximum latency and average latency. For fixed network density, r ¼ 25 m,
k ¼ 20. For fixed simulation area, l ¼ 200 m, r ¼ 20 m. For all simulations, Lm ¼ 1, Cm ¼ 7, Rm ¼ 7, 2BO-SO ¼ 128.

5.3 Comparison of DVHU with DSA
Here, we compare DVHU with DSA in terms of average
latency and fraction of associated nodes (i.e., the ratio of the
number of associated nodes to the total number of nodes).
Changing Lm clearly affects the average latency. Changing
Lm also affects fraction of associated nodes, as a “taller”
tree admits more devices into the network. Fig. 11 shows
that DVHU outperforms DSA for Lm 2 f 3; 6; 9g in terms of
average latency. On average, the average latency with
DVHU is only 24 percent of that with DSA. In terms of
fraction of associated nodes, DVHU can admit less devices
than DSA, due to its aggressive slot-reuse policy. For
example, when a VP uses the same beacon slot, the pair can
no longer admit any child. On average, the fraction of
associated nodes with DVHU is 12 percent lower than that
with DSA.

In Section 2, we mentioned that a node might be
“unaccommodated” when two or more of its neighbors
use the same beacon slot. To quantify and thereby visualize
this possibility of unaccommodation, we define the ratio of
unaccommodated nodes as the ratio jS2j

jS1j , where S1 is the set
of unassociated nodes with one or more ZC/ZR neighbors,
and S2 is the number of unassociated nodes with one or
more ZC/ZR neighbors, some of which use the same
beacon slot(s). S1 is nonempty when the parameter
combination Lm/Cm/Rm limits the admission of devices
into the network. S2 is nonempty when in addition to the
parameter combination Lm/Cm/Rm, beacon collision

further restricts the admission of devices into the network.
Fig. 11 shows that the ratio of unaccommodated nodes
decreases with network density. This is because as the
network becomes denser, the constraint imposed by Lm/
Cm/Rm has a higher impact than beacon collision. Fig. 11
also shows that the ratio of unaccommodated nodes
increases with Lm. This is because as the tree becomes
“taller” and hence capable of admitting more devices,
beacon collision becomes a more likely cause of nodes not
being able to join the network.

6 CONCLUSIONS

Traditionally, beacon schedules are chosen such that a ZR
does not reuse beacon slots already claimed by its
neighbors, or the neighbors of its neighbors. We observe
however that beacon slots can be reused judiciously to the
desirable effect of reduced packet delivery latency. Based
on this idea, we have formalized a framework where we
can analyze the risk of slot reuse between any two nodes. If
the calculated risk is high, slot reuse is disallowed;
otherwise, slot reuse is allowed. This is essentially the
heart of our ZigBee-compatible, distributed, risk-aware, prob-
abilistic beacon scheduling algorithm. Simulation results
confirm that 1) the slot-reuse rule represented by our core
algorithm is better than the slot-reuse rules espoused by the
specification and prior work in the literature, and 2) cen-
tralized algorithms with complete topology information

702 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

Fig. 10. Comparison of parent-selection policies using DVHU. For fixed network density, r ¼ 25 m, k ¼ 20. For fixed simulation area, l ¼ 200 m,
r ¼ 20 m. For all simulations, Lm ¼ 1 , Cm ¼ 7, Rm ¼ 7, 2BO-SO ¼ 128.

Fig. 11. Comparison of DVHU with DSA. Parameters: r ¼ 0:1l, Cm ¼ 7, Rm ¼ 7, 2BO-SO ¼ 128. The slot-then-depth parent-selection policy is used.

offer hardly any advantage over their distributed counter-

parts that demand only local neighborhood and parent-

hood information. We also have proposed a new parent-

selection rule as an augmentation to our core algorithm.

Simulation results confirm the benefit of this rule in further

reducing message latency.

ACKNOWLEDGMENTS

This work has been supported by the National Science

Council, Taiwan, under contract NSC 97-2221-E-390-014.

Yee Wei Law and Marimuthu Palaniswami were supported

by the Australian Research Council Research Network on

Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP), and the European Commission under

contract number FP7-257992 (SmartSantander). The authors

would like to thank Jiong Jin for his input.

REFERENCES

[1] IEEE Standard for Information Technology—Telecommunications and
Information Exchange between Systems—Local and Metropolitan Area
Networks—Specific Requirements Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (LR-WPANs), IEEE, http://
standards.ieee.org/getieee802/download/802.15.4-2003.pdf, 2003.

[2] ZigBee Alliance, “ZigBee-2007 Specification,” Document
053474r17, http://www.zigbee.org, Jan. 2008.

[3] M.A. Lopez-Gomez, A. Florez-Lara, J.M. Jimenez-Plaza, and J.C.
Tejero-Calado, “Algorithms and Methods beyond the IEEE
802.15.4 Standard for a Wireless Home Network Design and
Implementation,” Proc. IEEE Int’l Conf. Sensor Networks, Ubiqui-
tous, and Trustworthy Computing, pp. 138-145, June 2008.

[4] A. Koubâa, A. Cunha, M. Alves, and E. Tovar, “TDBS: A Time
Division Beacon Scheduling Mechanism for Zigbee Cluster-Tree
Wireless Sensor Networks,” Real-Time Systems J., vol. 40, no. 3,
pp. 321-354, Dec. 2008.

[5] V. Annamalai, S.K.S. Gupta, and L. Schwiebert, “On Tree-Based
Convergecasting in Wireless Sensor Networks,” Proc. IEEE
Wireless Comm. and Networking (WCNC), pp. 1942-1947, Mar. 2003.

[6] M.-S. Pan and Y.-C. Tseng, “Quick Convergecast in ZigBee
Beacon-Enabled Tree-Based Wireless Sensor Networks,” Computer
Comm., vol. 31, pp. 999-1011, 2008.

[7] L.-W. Yeh and M.-S. Pan, “Two-Way Beacon Scheduling in ZigBee
Tree-Based Wireless Sensor Networks,” Proc. IEEE Int’l Conf.
Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 130-
137, June 2008.

[8] X. Chen, X. Hu, and J. Zhu, “Minimum Data Aggregation Time
Problem in Wireless Sensor Networks,” Proc. Int’l Conf. Mobile
Ad-Hoc and Sensor Networks, X. Jia, J. Wu, and Y. He, eds.,
pp. 133-142, 2005.

[9] S. Upadhyayula, V. Annamalai, and S.K.S. Gupta, “A Low-
Latency and Energy-Efficient Algorithm for Convergecast in
Wireless Sensor Networks,” Proc. IEEE Global Telecomm. Conf.
(GlobeCom), pp. 3525-3530, Dec. 2003.

[10] N.-L Lai, C.-T King, and C.-H Lin, “On Maximizing the
Throughput of Convergecast in Wireless Sensor Networks,” Proc.
Int’l Conf. Advances in Grid and Pervasive Computing, S. Wu,
L. Yang, and T. Xu, eds., pp. 396-408, 2008.

[11] J. Zhu and X. Hu, “Improved Algorithm for Minimum Data
Aggregation Time Problem in Wireless Sensor Networks,”
J. Systems Science and Complexity, vol. 21, pp. 626-636, 2008.

[12] J. Mao, Z. Wu, and X. Wu, “A TDMA Scheduling Scheme for
Many-to-One Communications in Wireless Sensor Networks,”
Computer Comm., vol. 30, pp. 863-872, 2007.

[13] L.-H. Yen, Y.W. Law, and M. Palaniswami, “Risk-Aware Beacon
Scheduling for Tree-Based ZigBee/IEEE 802.15.4 Wireless Net-
works,” Proc. Fourth Int’l Wireless Internet Conf. (WICON ’08), 2008.

[14] I. Stojmenovic, A. Nayak, and J. Kuruvila, “Design Guidelines for
Routing Protocols in Ad Hoc and Sensor Networks with a
Realistic Physical Layer,” IEEE Trans. Comm., vol. 43, no. 3,
pp. 101-106, Mar. 2005.

[15] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Ad Hoc Networks
beyond Unit Disk Graphs,” Wireless Networks, pp. 715-729, 2008.

[16] G. Zhou, T. He, S. Krishnamurthy, and J.A. Stankovic, “Models
and Solutions for Radio Irregularity in Wireless Sensor Net-
works,” ACM Trans. Sensor Networks, vol. 2, no. 2, pp. 221-262,
2006.

[17] P. Hall, Introduction to the Theory of Coverage Processes. John Wiley
and Sons, 1988.

[18] L.-H. Yen and Y.-M. Cheng, “Clustering Coefficient of Wireless
Ad Hoc Networks and the Quantity of Hidden Terminals,” IEEE
Comm. Letter, vol. 9, no. 3, pp. 234-236, Mar. 2005.

Li-Hsing Yen received the BS, MS, and PhD
degrees in computer science, all from National
Chiao Tung University, Taiwan, in 1989, 1991,
and 1997, respectively. He was with the Depart-
ment of Computer Science and Information
Engineering at Chung Hua University, Taiwan,
from 1998 to 2006. He has been with the
Department of Computer Science and Informa-
tion Engineering, National University of Kaoh-
siung, Taiwan, since 2006 and is currently a full

professor. His research interests include mobile computing, wireless
networking, and distributed algorithms. He is a member of the IEEE.

Yee Wei Law received the BEng (1997), MEng
(2002), and PhD (2005) degrees from the
University of Southampton (United Kingdom),
Nanyang Technological University (Singapore),
and University of Twente (the Netherlands),
respectively. Currently, he is a research fellow
in the Department of Electrical and Electronic
Engineering, the University of Melbourne, Aus-
tralia. His main research interest is the security
of wireless sensor networks.

Marimuthu Palaniswami received the ME
degree from the Indian Institute of Science,
India, the MEngSc degree from the University of
Melbourne, and the PhD degree from the
University of Newcastle, Australia, before rejoin-
ing the University of Melbourne. He has pub-
lished more than 180 refereed papers and a
huge proportion of them have appeared in
prestigious IEEE journals and conferences.
He was given a Foreign Specialist Award by

the Ministry of Education, Japan, in recognition of his contributions to the
field of machine learning. His academic excellence is recognized by
several invited presentations of plenary/keynote lectures and he is a
panel member for several top international conferences. He has been an
associate editor for journals/transactions including IEEE Transactions
on Neural Networks. His research interests include SVMs, sensors and
sensor networks, machine learning, neural networks, pattern recogni-
tion, signal processing and control. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YEN ET AL.: RISK-AWARE DISTRIBUTED BEACON SCHEDULING FOR TREE-BASED ZIGBEE WIRELESS NETWORKS 703

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

