
KLEIN: A New Family of Lightweight Block Ciphers

Zheng Gong1, Svetla Nikova2,3, and Yee Wei Law4

1 School of Computer Science, South China Normal University, China
cis.gong@gmail.com

2 Faculty of EWI, University of Twente, The Netherlands
3 Dept. ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Belgium

s.i.nikova@utwente.nl
4 Department of EEE, The University of Melbourne, Australia

yee.wei.law@gmail.com

Abstract. Resource-efficient cryptographic primitives are essential for realizing
both security and efficiency in embedded systems like RFID tags and sensor
nodes. Among those primitives, lightweight block cipher plays a major role as
a building block for security protocols. In this paper, we describe a new fam-
ily of lightweight block ciphers named KLEIN, which is designed for resource-
constrained devices such as wireless sensors and RFID tags. Compared to related
proposals, KLEIN has advantage in the software performance on legacy sensor
platforms, while its hardware implementation can be compact as well.

1 Introduction

With the rapid advances in wireless communication and embedded systems, we are
becoming increasingly dependent on the so-called pervasive computing, evidence of
which can be found in ubiquitous smart cards, RFID tags, public transport systems,
smart meters, etc. Wireless sensor networks (WSNs), due to its potential in pushing
the envelope of pervasive computing to areas such as environment monitoring, military
surveillance and healthcare, is attracting more and more attention. When choosing se-
curity algorithms for resource-limited devices the implementation costs should be taken
into account. Symmetric-key algorithms, especially block ciphers, still play an impor-
tant role in the security of embedded systems. Moreover recent results have shown that
lightweight block ciphers can be used not only for encryption, but also for hash [4]
and authentication [21] on devices with highly constrained resources. For security and
performance concerns, some types of sensors are equipped with a hardware implemen-
tation of AES-128 [14], e.g. the Chipcon CC2420 transceiver chip [7]. But for resource-
constrained devices, AES could be too expensive, despite the various approaches that
have been proposed to reduce the costs of AES hardware and software implementations
[20,24,25,31].

In the literature, quite a few lightweight block ciphers with various design strategies
have been proposed [3,6,13,18,22,27,33,35,42,52]. Skipjack is a lightweight block ci-
pher designed by the U.S. National Security Agency (NSA) for embedded applications
[42]. The algorithm of Skipjack has an 80-bit key with a 64-bit block length based on
an unbalanced Feistel network. NOEKEON is a hardware-efficient block cipher, which

A. Juels and C. Paar (Eds.): RFIDSec 2011, LNCS 7055, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 Z. Gong, S. Nikova, and Y.W. Law

was proposed by Daemen et al. [13] and submitted to the NESSIE project in 2000.
HIGHT was designed by Hong et al. [22] as a generalized Feistel-like cipher, which is
suitable for low-resource devices. mCrypton [35] is designed by following the overall
architecture of Crypton [34] but with redesign and simplifications of each component
function to enable much compact implementation in both hardware and software. SEA
is a software-oriented block cipher which was proposed by Standaert et al. [52]. At
FSE 2007, Leander et al. [33] proposed a family of new lightweight variants of DES,
which are called DESL and DESXL. The main idea of the new variants of DES is to
use just one S-box recursively, instead of eight different S-boxes. Bogdanov et al. pro-
posed [3] an ultra-lightweight block cipher which is called PRESENT. The design of
PRESENT is extremely hardware efficient, since it uses a fully wired diffusion layer
without any algebraic unit. KATAN and KTANTAN are designed as a family of ultra-
lightweight block ciphers by De Cannière et al. [6]. Both KATAN and KTANTAN use
an 80-bit key length with 32, 48, or 64-bit block size, while KTANTAN is more com-
pact in hardware since its key will be unchangeably burnt on devices. In [18], Engels et
al. proposed a novel ultra-lightweight cryptographic algorithm with 256-bit key length
and 16-bit block size, referred to as Hummingbird, for resource-constrained devices.

The security of any block cipher should be extensively analyzed before its wide im-
plementation. Biham et al. have discovered an impossible differential attack on 31 of the
32 rounds [1] of Skipjack. A truncated differential attack was also published against 28
rounds of Skipjack by Knudsen et al. [29]. Granboulan [23] presented a revised result
in the differential analysis of Skipjack. By exploiting its periodic key schedule, a com-
plementation slide attack is mounted on the full 32 rounds of Skipjack [46]. The attack
requires only 232.5 known texts and 244 encryptions of Skipjack. In a NESSIE report,
Knudsen and Raddum [28] showed that “indirect mode” NOEKEON was still vulnera-
ble to certain peculiar kinds of related-key cryptanalysis, and discovered weaknesses in
NOEKEON-variant ciphers which cast doubt on the design strategy behind NOEKEON
and thus on its security. As a result NOEKEON was not selected by NESSIE. Al-
though PRESENT has a hardware-efficient diffusion layer, different attacks have been
applied to the reduced-round variants of PRESENT due to its diffusion property, e.g.
the weak key attack [43,44], the linear attack [8] and the saturation attack [9]. Recently,
Bogdanov and Rechberger [5] have proposed a meet-in-the-middle attack on KTAN-
TAN. At FSE 2011, Saarinen [50] presented a chosen-IV, chosen-message differential
attack which can break full-round Hummingbird in practice.

The performance of a block cipher is also a key factor for resource-constrained de-
vices. Efficiency in hardware is a major design criterion for lightweight block ciphers.
The area in gate equivalents (GE) is often used as a measure for the compactness of the
hardware implementation. Generally speaking, one GE is equal to the area which is re-
quired by two-input NAND gate with the lowest driving strength of the appropriate tech-
nology [45]. PRESENT, for example, has a compact implementation with 1570 GE in
a 64-bit datapath [4], as well as a very lightweight implementation with 1000 GE [49].
mCrypton and DESXL are also competitive since they are close to the 2000 GE barrier.
HIGHT is less attractive since its area in GE is over 3000 GE, which is less competitive
to the best AES implementations by Moradi et al. [40] (with 2400 GE), Hamalainen
et al. [24] (with 3100 GE) and Feldhofer et al. [20] (with 3400 GE). PRINTCipher

KLEIN: A New Family of Lightweight Block Ciphers 3

[27], GOST [48], KATAN and KTANTAN [6] are among the most hardware-efficient,
requiring less than 1000 GE.

Usually, sensors have better power and hardware capabilities than RFID tags. Since
software implementations incur zero hardware manufacturing cost and are flexible to
maintain, it is believed that software-efficient block ciphers are more practical for sen-
sors. In this paper, a new family of block ciphers called KLEIN is designed for resource-
constrained devices. Compared to related proposals, KLEIN has the advantage of the
software performance on legacy sensor platforms and at the same time its hardware
implementation can also be compact. Our security analysis shows that KLEIN has a
conservative security margin against various cryptanalyses.

The remainder of this paper is organized as follows. Section 2 describes the design
rationale and the specification of the KLEIN family. In Section 3, the security of KLEIN
is analyzed by considering known attacks. Compared to related lightweight proposals,
a detailed performance of KLEIN is discussed in Section 4. Section 5 concludes the
paper.

2 Specification of KLEIN

In this section we specify the cipher structure of KLEIN. Also the design principles
will be discussed, which are followed during the design process of KLEIN. For each of
the components of KLEIN, our choices will be motivated to achieve the well balanced
trade-off between performance and security. The test vectors of KLEIN can be found in
Appendix A.

2.1 Structure of KLEIN

The structure of KLEIN is a typical Substitution-Permutation Network (SPN), which is
also used in many advanced block ciphers, e.g. AES and PRESENT. In our first esti-
mation for obtaining a reasonable security margin and asymmetric iteration, we choose
the number of rounds NR as 12/16/20 for KLEIN-64/80/96 respectively. A high-level
description of the KLEIN encryption routine is described in Figure 1.

sk1 ← KEY;
STATE← PLAINTEXT;
for i = 1 to NR do
AddRoundKey(STATE, ski);
SubNibbles(STATE);
RotateNibbles(STATE);
MixNibbles(STATE);
ski+1 = KeySchedule(ski, i);

end for
CIPHERTEXT← AddRoundKey(STATE, skNR+1);

Fig. 1. The encryption routine of KLEIN

4 Z. Gong, S. Nikova, and Y.W. Law

Note that many lightweight block ciphers are proposed to use only the counter
mode and hence, the implementation costs of decryptions can be avoided. In the de-
sign of KLEIN, its lightweight property should also take the decryption algorithm into
consideration without fixing on any cipher mode.

2.2 The Round Transformation

The input and output of KLEIN are considered to be one-dimensional byte arrays. Dur-
ing the round transformation, all the operations can be optimized with byte-oriented
algorithms.

The SubNibbles Step. Since the AddRoundKey(x, y) step in the round transforma-
tion is simply x ⊕ y, the input text will be XORed with the i-th round key ski (where
i ∈ [1, NR]) before the SubNibbles step. In the SubNibbles step, the XORed results
will be divided into 16 of 4-bit nibbles and input to the same 16 S-boxes. The KLEIN
S-box S is a 4× 4 involutive permutation. The non-linear permutation executed by S is
described in Table 1. The implementation costs of such a 4-bit S-box is much lower than
that of an 8-bit S-box either by hardware or by software. By choosing an involutive S-
box, we can also save the implementation costs for its inverse. Since the same S-boxes
are used in the SubNibbles step, it allows a serialization of the design for an extremely
small footprint. Moreover, we just need to provide one single side-channel protection
for the S-box. Thus the overhead of an extra protection on its inverse is unnecessary.

Table 1. The 4-Bit S-box used in KLEIN

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

Since the SubNibbles step is the only non-linear layer in KLEIN, a natural require-
ment is an optimal resistance against linear and differential cryptanalyses. Therefore
the choice of the S-box S fulfills the following conditions.

1. The S-box satisfies S(S(x)) = x, x ∈ F
4
2, thus it can be used both in the encryption

and in the decryption.
2. The S-box has no fixed points, i.e. S(x) �= x, x ∈ F

4
2.

3. For any non-zero input difference ΔI ∈ F
4
2 and output difference ΔO ∈ F

4
2, it

holds that
�{x ∈ F

4
2|S(x) + S(x +ΔI) = ΔO} ≤ 4. (1)

Furthermore, if wt(ΔI) = wt(ΔO) = 1, we have

�{x ∈ F
4
2|S(x) + S(x +ΔI) = ΔO} ≤ 2. (2)

4. For any non-zero a, b ∈ F
4
2, it holds that

|SW
b (a)| = |

∑

x∈F
4
2

(−1)b·S(x)+a·x| ≤ 8. (3)

KLEIN: A New Family of Lightweight Block Ciphers 5

Furthermore, if wt(a) = wt(b) = 1, we have

|SW
b (a)| = |

∑

x∈F
4
2

(−1)b·S(x)+a·x| ≤ 4. (4)

The 4-bit S-box used in PRESENT satisfies �{x ∈ F
4
2|S(x) + S(x +ΔI) = ΔO} = 0

if wt(ΔI) = wt(ΔO) = 1, which assures a better avalanche effect [3]. However, the
PRESENT S-box is not an involution. According to our exhaustive search result, there
is no such an involutive 4-bit S-box that can satisfy this additional property.

For each input differential ΔI , the maximum probability of any output differential
ΔO is up to 4/16 = 2−2. Let p be the probability of a linear characteristic. The cor-
relation of the linear characteristic over S is given by q = (2p − 1)2 [38]. From the
input-output correlation of S, it is straightforward that any linear characteristic over S
has a correlation of at most (2× 4

16 − 1)2 = 2−2.

The RotateNibbles Step. After the SubNibbles step, 16 nibbles bi0, b
i
1, · · · , bi15 will be

rotated left two bytes during the i-th round where i ∈ [1, NR]. The RotateNibbles step
is illustrated in Figure 2. The inverse operation will be simply rotate right two bytes per
round. Nevertheless, the RotateNibbles step can also be combined with the MixNibbles
step to avoid the hardware or software costs.

Fig. 2. The RotateNibbles step

The MixNibbles Step. The MixNibbles step is a bricklayer permutation of the state.
The i-th round input nibbles {ci0, ci1, · · · , ci15} will be divided into 2 tuples, which will
be proceeded the same as the MixColumns step in Rijndael. The tuples of the state
are considered as polynomials over F

8
2 and multiplied modulo x4 + 1 with a fixed

polynomial c(x) = 03·x3+01·x2+01·x+02. The inverse is also a fixed multiplication
polynomial d(x) = 0B · x3 + 0D · x2 + 09 · x+ 0E. The output of the MixNibbles step
will be the intermediate state si+1 for the next round transformation.

Note that the balance between the diffusion property and the software performance
let us make this choice. Although bit-shifting operations are often used in the diffusion
layer of many lightweight block ciphers (e.g. PRESENT and NOEKEON), efficiency
is lost in software implementations. From the number of active Sboxes, it seems a
better choice that the MixNibbles step chooses a matrix multiplication in GF (24). How-
ever, a byte-oriented matrix multiplication has advantages in the software implemen-
tations for 8-bit processors (e.g. Skipjack). By using the similar implementation of the

6 Z. Gong, S. Nikova, and Y.W. Law

MixColumns step for 8-bit processors [14], we can use just one 256-byte look-up table
to optimize the MixNibbles step. Also the same look-up table can be used to optimize
its inverse. After the 12/16/20 rounds of KLEIN-64/80/96, the MixNibbles step can still
provide a high number of active Sboxes for the security of KLEIN. The property of the
MixColumns step of Rijndael has been well analyzed, the details can be found in the
literature [12,14,16].

Key schedule. For round transformations, all practical block ciphers use varied key
schedules to expand a relative small master key to a series of dependent round keys.
Since KLEIN will be used to construct block-cipher-based hash functions and mes-
sage authentication codes, the key schedule should be agile even if keys are frequently
changed. On the other hand, the key schedule should also consider a proper complex-
ity for the security. To avoid the potential related-key weakness whilst balancing the
performance, the key schedule of KLEIN is designed as follows.

1. Input: a 64/80/96-bit master key mk for KLEIN-64/80/96.
2. Key scheduling: Let i be the round counter of KLEIN-64/80/96. In the first round so

that i = 1, the initial subkey sk1 = mk = sk10 ||sk11 || · · · ||sk1t where t = 7/9/11
for KLEIN-64/80/96. For KLEIN-64, the (i + 1)-th subkey ski+1 can be derived
from the i-th subkey ski as follows.

(a) Divide the i-th subkey ski into two byte-oriented tuples (a, b), such that a =
(ski0, sk

i
1, · · · , ski� t

2 �
) and b = (ski� t

2 �
, ski� t

2 �+1
, · · · , skit). For KLEIN-64, we

have a = (ski0, sk
i
1, sk

i
2, sk

i
3) and b = (ski4, sk

i
5, sk

i
6, sk

i
7).

(b) Cycling left shift one byte position in (a, b), obtain a′ = (ski1, · · · , ski� t
2 �
, ski0)

and b′ = (ski� t
2 �+1

, · · · , skit, ski� t
2 �
) for the next step. For KLEIN-64, we have

a′ = (ski1, sk
i
2, sk

i
3, sk

i
0) and b′ = (ski5, sk

i
6, sk

i
7, sk

i
4).

(c) Swap the tuple (a′, b′) with a Feistel-like structure, such that a′′ = b′ becomes
the left tuple, whilst b′′ = a′ ⊕ b′ becomes the right tuple.

(d) XOR round counter i with the third byte in the left tuple a′′, and substitute the
second and the third bytes of the right tuple b′′ by using the KLEIN S-box S.

3. Output: iteratively execute the above step for different key lengths, truncate the
leftmost 64 bits of subkey ski for the i-th round transformation.

Figure 3 illustrates the KeySchedule algorithm of KLEIN-64. The key schedule of
KLEIN is feasible for different key sizes. To save the memory for storing intermedi-
ate values, the subkeys of KLEIN can be generated during each round transformation.
During the performance tuning on sensors, we observed that the on-the-fly key sched-
ule of KLEIN is more resource-efficient than the traditional optimization such that all
subkeys are computed in advance. Also the Feistel-like structure provides more com-
plexities to resist weak key attacks, which was found on the PRESENT block cipher
recently [8,43]. For simplicity, we only use an incremental round counter as the ad-
ditive constant to avoid the slide attack. Like some other block cipher schemes, those
round counters in KLEIN can also be defined by a recursion rule or an LFSR sequence
in GF (28) to avoid the potential complementation properties.

KLEIN: A New Family of Lightweight Block Ciphers 7

Fig. 3. The KeySchedule algorithm of 64-bit key length

3 Security Analysis

In this section we will present a security analysis of KLEIN, showing its resistance
against various cryptanalytic attacks.

3.1 Linear and Differential Attacks

The resistance of linear and differential attacks of a block cipher is mainly based on
the branch number, i.e. the number of active S-boxes in a certain number of rounds. In
Rijndael, the authors use the Maximum Distance Separable (MDS) code to achieve the
maximal branch number in a small number of rounds. By combining the RotateNibbles
and MixNibbles steps, KLEIN can achieve a balance between the minimum number of
active S-boxes and the software performance for resource-constrained devices.

Theorem 1. Any four-round differential characteristic of KLEIN has a minimum of 15
active S-boxes.

Proof. The MixColumns step in Rijndael is based on a Maximum Distance Separable
code and the distance between any two distinct words called branch number is 5 [14].
Since we use the same matrix multiplication in the MixNibbles step of KLEIN, the
branch number of MixNibbles is also 5. Since MixNibbles is computed with multipli-
cations in GF (28), an active byte in the diffusion layer of KLEIN implies one or two
nibbles (i.e. the leftmost and the rightmost 4 bits) are active. For simplicity, we assume
every active byte only has one active nibbles. Let Δi = Li||Ri be the i-th round input
difference characteristic, where Li and Ri denote the left and the right 4-byte tuples
respectively. The differential patterns of four-round KLEIN can be analyzed as follows.

8 Z. Gong, S. Nikova, and Y.W. Law

– If there is 1 non-zero byte in L1, it will be at least one active S-box in the first
round. After the Rotate and MixNibbles, the difference will be propagated to 4
bytes either in the left or the right 4-byte tuple. Thus Δ2 will have minimum 4
active S-boxes in the second round. For simplicity, we assume L2 contains 4 active
bytes while R2 remains zero. After the RotateNibbles step, both the left and the
right tuples will have 2 active bytes. Since the branch number of MixNibbles is 5,
the minimum number of active bytes with the differential characteristic Δ3 will be
6. After RotateNibbles in the third round, if the active bytes in L3 is 2 or 3, R3

will have 4 or 3 active bytes respectively. In either of the situations, Δ4 will have
minimum 3+1 or 2+2 active bytes. In this general case, the minimum number of
active S-boxes after four rounds is 1 + 4 + 6 + 4 = 15.

– If there is 2 non-zero bytes in L1, the difference will be propagated to at least 3
bytes after MixNibbles. For simplicity, we assume that L2 contains 3 active bytes
while R2 remains zero. After RotateNibbles, the active bytes in L2 is 1 or 2, while
R2 will have 2 or 1. Since the branch number of MixNibbles is 5, the minimum
number of active bytes with the differential characteristic Δ3 will be 7. After Ro-
tateNibbles in the third round, if the active bytes in L3 is 3 or 4, R3 will have 4 or 3
active bytes respectively. In either of the situations, Δ4 will have minimum 2+1 or
1+2 active bytes. In this general case, the minimum number of active S-boxes after
four rounds is 2 + 3 + 7 + 3 = 15.

– In the case of 3 (or 4) active bytes in L1, the difference patterns of the first three
rounds will be identical to the case of 2 active bytes in the last three rounds. The
minimum active bytes after three rounds are 3+7+3 (or 4+6+4). In the third round,
first we choose all 3 (or 4) active bytes to be moved to L3 after RotateNibbles. After
MixNibbles, the active bytes will be at least 2 (or 1) since the branch number is 5.
In any other choice, the active bytes in the forth round will be no less than 2 (or 1).
Thus the minimum number of active S-boxes after four rounds is 3+7+3+2 = 15
(or 4 + 6 + 4 + 1 = 15) in this general case.

R ound 1

R ound 2

SubN ibb les

R o tateN ibb les

M ixN ibb les

O u tpu t

SubN ibb les

R o tateN ibb les

M ixN ibb les

O u tpu t

Fig. 4. A typical differential pattern of KLEIN

Figure 4 describes a typical differential pattern of KLEIN, where the colored boxes
denote the active bytes in a trial. Without loss of generality, the same differential pat-
terns will be followed where all active bytes are in R1. If both L1 and R1 have one

KLEIN: A New Family of Lightweight Block Ciphers 9

or more active bytes, it is straightforward that the minimum number of active S-boxes
will be no less than 15. Thus any four-round differential characteristic of KLEIN has a
minimum of 15 active S-boxes. ��

In RotateNibbles and MixNibbles, if we choose operations over GF (24) for the
MDS code, the active S-boxes in a four-round differential characteristic can be lower
bounded by 25. Although a higher number of active S-boxes means KLEIN can use
less rounds to be secure, our tuning experiments in sensors show that the software per-
formance will be sacrificed by operations over GF (24) (e.g. bit-shifting from leftmost
to rightmost). However, it always requires a trade-off between the performance and the
security. For ultra-lightweight in hardware, any differential characteristic of PRESENT
has only 10 active S-boxes after 5 rounds.

In Rijndael, the coefficients of the MixColumns step are selected for assuring
that both the differential branch number and the linear branch number are equal to 5.
Based on the combination of RotateNibbles and MixNibbles, KLEIN also has the same
property on the branch numbers. Therefore the minimum number of active S-boxes
in a four-round linear approximation can be derived from the four-round differential
propagation result of KLEIN. For brevity, the proof is omitted here.

Theorem 2. Any four-round linear approximation of KLEIN has a minimum of 15
active S-boxes.

The strength of a cipher against differential attacks is reflected by the maximum prob-
ability of differential , i.e. a collection of characteristics. However, in cryptanalysis we
often assume that one characteristic has a much larger probability than the other charac-
teristics of the differential. Thus a characteristic with the maximum probability is taken
as an estimate of the probability of the differential. Similar assumptions can be found
in linear attacks as well. Based on the minimum active S-boxes of characteristics in
certain rounds, we can also derive the resistance of the differential and linear attacks
on KLEIN. Since any differential characteristic over the KLEIN S-box has a maximum
2−2 possibility, the security against differential attacks of KLEIN-64 can be estimated
as follows.

Lemma 1. Let εd12R be the maximum probability of a differential characteristic of 12
rounds of KLEIN-64. Then εd12R ≤ (2−2)12×15/4 ≈ 2−90.

Since any linear characteristic over the KLEIN S-box has a correlation 2−2, the security
against linear attacks of the full-round KLEIN-64 is described as follows.

Lemma 2. Let εl12R be the maximal bias of a linear approximation of 12 rounds of
KLEIN-64. Then εl12R ≤ (2−2)12×15/4 ≈ 2−90.

By following the similar analysis, we note that the security of KLEIN-80/96 against
linear and differential attacks can be gauged with 16/20 rounds.

Lemma 3. Let εd16R be the maximum probability of a differential characteristic of 16
rounds of KLEIN-80. Then εd16R ≤ (2−2)16×15/4 ≈ 2−120.

Lemma 4. Let εl16R be the maximum bias of a linear approximation of 16 rounds of
KLEIN-80. Then εl16R ≤ (2−2)16×16/4 ≈ 2−120.

10 Z. Gong, S. Nikova, and Y.W. Law

Lemma 5. Let εd20R be the maximum probability of a differential characteristic of 20
rounds of KLEIN-96. Then εd20R ≤ (2−2)20×15/4 ≈ 2−150.

Lemma 6. Let εl20R be the maximum bias of a linear approximation of 20 rounds of
KLEIN-96. Then εl20R ≤ (2−2)20×15/4 ≈ 2−150.

Based on the above results, the KLEIN family of ciphers have a good security margin in
the full rounds. The extra security margin of a block cipher may benefit the lightweight
design of block-cipher-based hash functions or message authentication codes [15,21].

3.2 Key Schedule Attacks

Since there are no established guidelines for the design of key schedules, both a wide
variety of designs and a wide variety of schedule-specific attacks have been proposed.
The most effective attacks come under the general heading of related-key attacks and
slide attacks, and both rely on the build-up of identifiable relationships between differ-
ent sets of subkeys. To counter this threat, we use a round-dependent counter so that the
subkey sets cannot easily be symmetric. We also use the same KLEIN S-box to provide
the non-linearity of the subkeys whilst saving the implementation costs. For related-key
attacks, we have the following properties for protection.

– For KLEIN-64/80/96, each bit in the key register depends on at least 4 user-supplied
bits after 4/5/6 rounds.

– For KLEIN-64/80/96, all the bits in the key register are a non-linear function of the
64/80/96-bit user-supplied key by 8/10/12 rounds.

3.3 Integral Attack

Integral cryptanalysis are usually applied to exploit vulnerabilities in byte-oriented
block ciphers, such as AES [14]. An integral attack will investigate the propagation
of sums of many values, whilst a differential attack will consider the propagation of dif-
ferences between pairs. In a byte-oriented cipher, the sum of a group differences might
be a predictable value after certain rounds. For better software performance, the design
of KLEIN also adopts a byte-oriented structure like AES. Thus it also faces a similar
vulnerability on integral attacks [30].

First we consider a five-round integral attack on KLEIN, which is based on the
attack given by Knudsen and Wagner on AES [30]. The attacker chooses a group of
256 plaintexts, which have equal values in all bytes except one. According to the math-
ematic properties of the RotateNibbles and MixNibbles steps, the sum of 256 bytes will
be zero after three rounds of encryption. Then the attacker will guess 4 key bytes in the
fourth round and 1 key bytes in the fifth round. If the 4 + 1 = 5 key bytes are right,
the sum of all 256 values should also be zero after five rounds. For KLEIN-80/96, we
can extend the above attack to six rounds. Thus we need a collection of 232 plaintexts
in the first round and guess 4 + 5 = 9 bytes in total. To the best of our knowledge,
any integral attack on KLEIN over eight rounds will be more complicated than exhaus-
tive key searches or requires the complete code book. Except byte-oriented integral

KLEIN: A New Family of Lightweight Block Ciphers 11

attacks, One could try nibble-oriented attacks with 16 plaintexts which have equal val-
ues except one nibble. However, since the MixNibbles step is fully based on multipli-
cations in GF (28), the sum of 16 nibbles is unpredictable after three rounds. Therefore
nibble-oriented integral attacks will not be more feasible than byte-oriented ones.

3.4 Algebraic Attack

The algebraic attack as well as the Cube Attack [17], requires the algebraic form de-
scribing the output bits has a relatively small degree in terms of the input bits being
processed. To exploit the algebraic relations between input and output bits of a block
cipher, attackers may consider a subset of input bits whilst leave the other fixed. In the
S-box of KLEIN, every output bit can be represented by a 3-degree polynomial with 4
input variables in ANF. For total 64 input bits, the complexity of finding the polynomials
for the entire cipher soon becomes too large. In the full-round KLEIN-64, the number of
S-boxes in the encryption and the key schedule equals n = 12× 16 + 12× 4 = 240. It
is well-known that any 4-bit S-box can be represented by at least 21 quadratic equa-
tions over GF (2). Thus in KLEIN-64, we have the number of quadratic equations
n× 21 = 5040 in n× 8 = 1920 variables. By changing the number of rounds, similar
results can easily be extended to KLEIN-80 and KLEIN-96. In our experiment, we were
unable to transform three-round KLEIN-64 to the ANF equations in a reasonable time.

3.5 Side-Channel Attack

Since it is easy to add noises and loops in the software implementation of a block ci-
pher to avoid side-channel attacks, here we will discuss on how to secure the hardware
implementation of KLEIN. Except for the SubNibbles step, KLEIN is completely lin-
ear. The S-box of KLEIN can be implemented to resist side-channel attacks even in the
presence of glitches using the secret sharing method proposed by Nikova et al. [41].
Also the linear part of KLEIN can be securely processed by using independent shares.
A survey of lightweight cryptography and DPA countermeasures [39] estimates that the
masking based on secret sharing will increase the hardware overhead with a factor of 3,
which is still promising because it has a moderate area overhead and was theoretically
proven to be secure against DPA attacks [41].

4 Performance

Here we analyze the performance of KLEIN. Based on legacy low-resource sensors
TelosB (with 16-bit TI MSP430 microcontroller) and IRIS with (8-bit ATmega128L
microcontroller), a detailed comparison of KLEIN and other related ciphers is given
in Table 2. These two platforms are chosen because of their opposing characteristics:
TelosB has more RAM than IRIS (10 KB vs 8 KB) but IRIS has a larger Flash mem-
ory than TelosB (128 KB vs 48 KB); TelosB’s transceiver CC2420 supports hardware
AES encryption but IRIS does not. For resource-constrained devices, a lower RAM
cost would be beneficial for power consumptions and manufactory expenses. Since the

12 Z. Gong, S. Nikova, and Y.W. Law

CC2420 chip on TelosB also supports AES hardware encryption, we also test its per-
formance by implementing the standalone AES encryption of CC2420 [53]. The result
shows AES hardware implementation has a great improvement on RAM and ROM
costs, while the processing speed is even lower than the software implementation. We
attribute this latency to the fact that the hardware AES encryption function must power
up the CC2420 chip on TelosB in advance. The latency might be improved by setting
CC2420 in the standby mode, but at the expense of increased power consumptions.

From a wide range of block ciphers, PRESENT is chosen because it is ultra-
lightweight for highly resource-constrained [4], while Skipjack is proven to be software-
efficient for 8-bit processors [32]. Both of them have similar block and key sizes as
KLEIN. For Hummingbird encryption, Engels et al. [18] shows that the speed opti-
mized implementation on 8-bit microcontrollers is about 28.9% slower than PRESENT
encryption when the message length is 64 bits. On 16-bit microcontrollers Humming-
bird achieves around 50% ∼ 78% performance improvements for different message
blocks [18]. The KATAN family ciphers and PRINTCipher, while space-efficient for
hardware implementation, are problematic in software performance. This is because
KATAN ciphers utilize bit manipulations extensively, whereas PRINTCipher operates
on 3 bits at a time, which is at odds with existing 8/16/32-bit architectures.

The ciphers are written in nesC for the TinyOS 2.1.1 platform. This version of
TinyOS does provide support for CC2420’s AES encryption, but only in conjunction
with radio operations. Support for the so-called standalone AES encryption is provided
by Zhu’s code [53]. The default optimization strategy of TinyOS (“-Os”, which min-
imizes size but not at the expense of speed) is applied to all ciphers except software
AES and DESXL on IRIS. For these exceptions, “-O1” and “-O0” are used respectively
to bypass compilation errors. The maximum stack size on TelosB is measured using
MSPsim [19]. There is no known tool for the same purpose on IRIS. The processing
speeds are measured in encryption/decryption, whilst the storage costs are calculated
in together. Since there is no such an instruction in TelosB or IRIS which can measure
the processing speed by cycles per byte, the speed is compared by using the results of
processing the same 16-byte message in milliseconds. All software implementations
are optimized using look-up tables. On IRIS, the tables are specifically programmed to
be stored in Flash memory. The performance comparison in Table 2 shows that KLEIN
is competitive for low-resource applications and especially suitable for sensors. Al-
though the block processing speeds of KLEIN are lower than Skipjack, it is a reasonable
trade-off considering the security margin of KLEIN.

In KLEIN, the MixNibbles step will be a non-straightforward part of hardware
design. Since it is the same as the MixColumns step of AES, we may simply borrow
the idea from AES hardware implementations. Feldhofer et al. [20] shows a hardware-
efficient implementation of the MixColumns step, which only costs about 340 GE with
a 32-bit width. Because the MixNibbles step can be paralleled by two 32-bit tuples,
Feldhofer et al.’s implementation can also be used in KLEIN families. The RotateNib-
bles step is simple byte-shift operations, which can be implemented with a minimum
hardware.

For a hardware implementation, a low-cost RFID tag might have between 1,000
and 10,000 GE in total, while its security components may occupy up to 2,000 GE only

KLEIN: A New Family of Lightweight Block Ciphers 13

Table 2. The software performance of KLEIN and related block ciphers

Performance on IRIS

Algorithm
Key length

(bit)
Block size

(bit)
RAM
(byte)

ROM
(byte)

Processing speed
(ms per 16-byte message)

AES-128
(software implementation) 128 128 295 14216 1.32/1.29

NOEKEON
(indirect encryption) 128 128 111 4472 3.33/3.33

NOEKEON
(direct encryption) 128 128 111 4424 3.33/3.33

DESXL 184 64 306 32186 6.43/5.68
GOST 256 64 233 14342 1.93/1.89
SEA 96 96 249 1904 3.76/3.67

HIGHT 128 64 117 2510 1.84/1.46
Hummingbird 128 16 159 2646 4.30/9.14
PRESENT-80 80 64 365 6866 4.06/9.34

PRINTCipher-48 80 48 125 6184 21.6/14.9
KATAN-64 80 64 625 3260 80.5/43.5

mCrypton-64 64 64 355 9768 5.20/4.41
mCrypton-96 96 64 355 10252 5.37/4.41

mCrypton-128 128 64 355 11160 5.49/4.51
Skipjack 80 64 133 2566 0.90/0.90

KLEIN-64 64 64 105 2582 0.96/1.25
KLEIN-80 80 64 107 2672 1.21/1.70
KLEIN-96 96 64 109 2782 1.52/2.11

Performance on TelosB

Algorithm
Key length

(bit)
Block size

(bit)
RAM
(byte)

ROM
(byte)

Max stack
(byte)

Processing speed
(ms per 16-byte message)

AES-128
(software implementation) 128 128 218 10898 230 1.71/1.68

AES-128
(hardware encryption) 128 128 60 900 116 2.29

NOEKEON
(indirect encryption) 128 128 56 3544 258 2.38/2.43

NOEKEON
(direct encryption) 128 128 56 4224 242 2.38/2.42

DESXL 184 64 186 6966 144 1.86/1.86
GOST 256 64 190 4748 120 2.56/2.52
SEA 96 96 204 2754 120 7.3/6.89

HIGHT 128 64 40 2050 132 2.15/2.15
Hummingbird 128 16 82 1822 116 4.61/9.69
PRESENT-80 80 64 288 6424 128 6.6/11.1

PRINTCipher-48 80 48 48 6210 128 28.3/21.3
KATAN-64 80 64 548 2628 202 120/121

mCrypton-64 64 64 248 7816 182 3.4/3.91
mCrypton-96 96 64 248 8026 158 3.4/3.91

mCrypton-128 128 64 248 8748 158 3.4/3.91
Skipjack 80 64 56 1542 130 1.37/1.33

KLEIN-64 64 64 50 2980 186 1.97/2.5
KLEIN-80 80 64 52 3112 178 2.62/3.4
KLEIN-96 96 64 54 3266 182 3.32/4.55

14 Z. Gong, S. Nikova, and Y.W. Law

[26,47]. The area restriction could be looser on sensors. By using VeriSilicon GSMC
0.13um low-power process high-density standard cell library, Yalcin et al. implemented
KLEIN-64 for an ultra-lightweight crypto processor [2]. Based on their results and syn-
thesized with TSMC 0.18 μm Process 1.8-Volt SAGE-X Standard Cell Library, the
hardware implementation results of KLEIN families are compared to the related block
ciphers in Table 3.

Table 3. Hardware implementation results comparison of KLEIN and related block ciphers

Hardware Encryption

Algorithm Implementation
Logic process

(µm)
Datapath

(bits) Area in GE Cycle per block

AES-128
[51]
[24]
[40]

0.11
0.13
0.18

32
8
8

5400
3100
2400

54
160
226

HIGHT [22] 0.25 64 3048 34

PRESENT-80 [4] 0.18
64
4

1570
1075

32
563

KLEIN-64 [2] 0.13 8 1365 96

KLEIN-64 this paper 0.18
64
8
4

2475
1397
1220

13
103
207

KLEIN-80 this paper 0.18
64
8
4

2629
1630
1478

17
135
271

KLEIN-96 this paper 0.18
64
8
4

2769
1696
1528

21
167
335

5 Conclusion

In this paper, we have proposed a new family of block ciphers called KLEIN. The
goal of our design is to provide a practical and secure cipher for low-resource appli-
cations, especially for RFIDs and wireless sensor networks. Although KLEIN mainly
focuses on software implementations, it also enjoys hardware efficiency resulting from
its simple structure with an involutive S-box. The various key lengths of KLEIN of-
fer a flexibility and a moderate security level for ubiquitous applications. Therefore,
our design increases the available options for lightweight block ciphers in low-resource
applications.

Acknowledgement. We would like to thank Begül Bilgin for her helpful results on
the hardware implementations of KLEIN. And we also thank Hongjun Wu and many
anonymous reviewers for their valuable comments. We are grateful to Xinxin Fan, Chae
Hoon Lim, Axel Poschmann, Eric Smith, Francois-Xavier Standaert for sharing their
test vectors and reference source code with us. The work described in this paper has
been supported [in part] by the European Commission through the ICT program under
contract ICT-2007-216676 ECRYPT II. The authors acknowledge the financial sup-
port of SenterNovem for the ALwEN project, grant PNE07007. Yee Wei Law is partly
supported by the Australian Research Council under contract number DP1095452, and
the European Commission under contract number FP7-257992 (SmartSantander). The
authors also thank the support of NSFC Grant 61100201.

KLEIN: A New Family of Lightweight Block Ciphers 15

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using
Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23.
Springer, Heidelberg (1999)

2. Bilgin, B., Kavun, E.B., Yalcin, T.: Towards an Ultra Lightweight Crypto Processor. In:
Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (Light-
sec 2011), pp. 76–83. IEEE CS, Los Alamitos (2011)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P.,
Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg
(2007)

4. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash
Functions and RFID tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

5. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the
Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

6. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A family of
Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

7. Chipcon: CC2420: 2.4 GHz IEEE 802.15.4/Zigbee-ready RF transceiver,
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

8. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA
2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

9. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack Against The Block Cipher
PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210. Springer,
Heidelberg (2009)

10. Crossbow: IRIS wireless measurement system,
http://www.xbow.com/Products/Product pdf files/
Wireless pdf/IRIS Datasheet.pdf

11. Crossbow: TelosB mote platform,
http://www.xbow.com/Products/Product pdf files/
Wireless pdf/TelosB Datasheet.pdf

12. Daemen, J., Knudsen, L.R., Rijmen, V.: Linear Frameworks for Block Ciphers. Designs,
Codes and Cryptography 22(1), 65–87 (2001)

13. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON Block Cipher. The
NESSIE Proposal (2000)

14. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard.
Springer, Heidelberg (2002)

15. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and A Specific Instance
ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 1–17.
Springer, Heidelberg (2005)

16. Daemen, J., Rijmen, V.: New Criteria for Linear Maps in AES-Like Ciphers. Cryptography
and Communications 1(1), 47–69 (2009)

17. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)

18. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Hummingbird: Ultra-Lightweight Cryp-
tography for Resource-Constrained Devices. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias,
A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054,
pp. 3–18. Springer, Heidelberg (2010)

http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf

16 Z. Gong, S. Nikova, and Y.W. Law

19. Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.: MSPsim - An Extensible Simu-
lator for MSP430-Equipped Sensor Boards. In: Proceedings of the European Conference on
Wireless Sensor Networks (EWSN), Poster/Demo Session, Delft, The Netherlands (January
2007)

20. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of Sand. IEEE
Proceedings on Information Security 152(1), 13–20 (2005)

21. Gong, Z., Hartel, P., Nikova, S., Zhu, B.: Towards Secure and Practical MACs for Body
Sensor Networks. In: Roy, B.K., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,
pp. 182–198. Springer, Heidelberg (2009)

22. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong,
K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

23. Granboulan, L.: Flaws in Differential Cryptanalysis of Skipjack. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 328–335. Springer, Heidelberg (2002)

24. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and Implementation of
Low-Area and Low-Power AES Encryption Hardware Core. In: DSD 2006: Proceedings of
the 9th EUROMICRO Conference on Digital System Design, pp. 577–583. IEEE Computer
Society, Washington, DC, USA (2006)

25. Healy, M., Newe, T., Lewis, E.: Analysis of Hardware Encryption Versus Software Encryp-
tion on Wireless Sensor Network Motes. In: Mukhopadhyay, S.C., Gupta, G.S. (eds.) Smart
Sensors and Sensing Technology 2008. LNEE, vol. 20, pp. 3–14. Springer, Heidelberg (2008)

26. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)

27. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTCipher: A Block Ci-
pher for IC-Printing. In: Mangard and Standaert [37], pp. 16–32

28. Knudsen, L.R., Raddum, H.: On NOEKEON. The NESSIE Report (April 2001)
29. Knudsen, L.R., Robshaw, M.J.B., Wagner, D.: Truncated Differentials and Skipjack. In:

Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 165–180. Springer, Heidelberg (1999)
30. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE

2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)
31. Könighofer, R.: A Fast and Cache-Timing Resistant Implementation of the AES. In: Malkin,

T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer, Heidelberg (2008)
32. Law, Y.W., Doumen, J., Hartel, P.H.: Survey and Benchmark of Block Ciphers for Wireless

Sensor Networks. ACM Trans. Sen. Netw. 2(1), 65–93 (2006)
33. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In:

Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)
34. Lim, C.H.: A Revised Version of CRYPTON - CRYPTON V1.0. In: Knudsen, L.R. (ed.) FSE

1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)
35. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of Low-

Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

36. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In:
Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg
(2005)

37. Mangard, S., Standaert, F.X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Heidelberg
(2010)

38. Matsui, M.: New Structure of Block Ciphers with Provable Security against Differential and
Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 205–218.
Springer, Heidelberg (1996)

KLEIN: A New Family of Lightweight Block Ciphers 17

39. Moradi, A., Poschmann, A.: Lightweight Cryptography and DPA Countermeasures: A Sur-
vey. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.)
RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054, pp. 68–79. Springer, Heidelberg (2010)

40. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Com-
pact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

41. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-Linear Func-
tions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

42. NIST. Skipjack and KEA algorithm Specifications (version 2.0). NIST online document
(May 1998), http://csrc.nist.gov/groups/ST/toolkit/
documents/skipjack/skipjack.pdf

43. Ohkuma, K.: Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis, pp. 249–
265. Springer, Heidelberg (2009)

44. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Crypt-
analysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González Nieto, J. (eds.)
ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)

45. Paar, C., Poschmann, A., Robshaw, M.: New Designs in Lightweight Symmetric Encryption.
In: Kitsos, P., Zhang, Y. (eds.) RFID Security: Techniques, Protocols and System-on-Chip
Design, pp. 349–371. Springer, Heidelberg (2008)

46. Phan, R.C.W.: Cryptanalysis of Full Skipjack Block Cipher. Electronic Letters, 69–71 (2002)
47. Poschmann, A.: Lightweight Cryptography - Cryptographic Engineering for a Pervasive-

World. PhD thesis, Ruhr-University Bochum, Germany (2009)
48. Poschmann, A., Ling, S., Wang, H.: 256 Bit Standardized Crypto for 650 Ge - Gost Revisited.

In: Mangard and Standaert [37], pp. 219–233
49. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for

Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008)

50. Saarinen, M.J.O.: Cryptanalysis of Hummingbird-1. In: Joux, A. (ed.) FSE 2011. LNCS,
vol. 6733, pp. 328–341. Springer, Heidelberg (2011)

51. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture
with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–
254. Springer, Heidelberg (2001)

52. Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: SEA: A Scalable Encryption Al-
gorithm for Small Embedded Applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling,
D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)

53. Zhu, B.: The Standalone AES Encryption of CC2420 (TinyOS 2.10 and MICAz) (December
2008), http://cis.sjtu.edu.cn/index.php/Bo_Zhu

http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://cis.sjtu.edu.cn/index.php/Bo_Zhu

18 Z. Gong, S. Nikova, and Y.W. Law

Appendix A. Test Vectors of KLEIN

Table 4. Test vectors for KLEIN-64

Key Message Cipher
0000 0000 0000 0000 FFFF FFFF FFFF FFFF CDC0 B51F 1472 2BBE

FFFF FFFF FFFF FFFF 0000 0000 0000 0000 6456 764E 8602 E154
1234 5678 90AB CDEF FFFF FFFF FFFF FFFF 5923 56C4 9971 76C8
0000 0000 0000 0000 1234 5678 90AB CDEF 629F 9D6D FF95 800E

Table 5. Test vectors for KLEIN-80

Key Message Cipher
0000 0000 0000 0000 0000 FFFF FFFF FFFF FFFF 6677 E20D 1A53 A431

FFFF FFFF FFFF FFFF FFFF 0000 0000 0000 0000 8224 7502 273D CC5F
1234 5678 90AB CDEF 1234 FFFF FFFF FFFF FFFF 3F21 0F67 CB23 687A
0000 0000 0000 0000 0000 1234 5678 90AB CDEF BA52 39E9 3E78 4366

Table 6. Test vectors for KLEIN-96

Key Message Cipher
0000 0000 0000 0000 0000 0000 FFFF FFFF FFFF FFFF DB9F A7D3 3D8E 8E36

FFFF FFFF FFFF FFFF FFFF FFFF 0000 0000 0000 0000 15A3 A033 86A7 FEC6
1234 5678 90AB CDEF 1234 5678 FFFF FFFF FFFF FFFF 7968 7798 AFDA 0BC3
0000 0000 0000 0000 0000 0000 1234 5678 90AB CDEF 5006 A987 A500 BFDD

	KLEIN: A New Family of Lightweight Block Ciphers
	Introduction
	Specification of KLEIN
	Structure of KLEIN
	The Round Transformation

	Security Analysis
	Linear and Differential Attacks
	Key Schedule Attacks
	Integral Attack
	Algebraic Attack
	Side-Channel Attack

	Performance
	Conclusion
	References

